skip to main content

Search for: All records

Creators/Authors contains: "Sozzi, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2023
  2. Free, publicly-accessible full text available September 1, 2022
  3. A bstract The NA62 experiment reports the branching ratio measurement $$ \mathrm{BR}\left({K}^{+}\to {\pi}^{+}\nu \overline{\nu}\right)=\left({10.6}_{-3.4}^{+4.0}\left|{}_{\mathrm{stat}}\right.\pm {0.9}_{\mathrm{syst}}\right)\times {10}^{-11} $$ BR K + → π + ν ν ¯ = 10.6 − 3.4 + 4.0 stat ± 0.9 syst × 10 − 11 at 68% CL, based on the observation of 20 signal candidates with an expected background of 7.0 events from the total data sample collected at the CERN SPS during 2016–2018. This provides evidence for the very rare K + → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ decay, observed with a significance of 3.4 σ . The experimentmore »achieves a single event sensitivity of (0 . 839 ± 0 . 054) × 10 − 11 , corresponding to 10.0 events assuming the Standard Model branching ratio of (8 . 4 ± 1 . 0) × 10 − 11 . This measurement is also used to set limits on BR( K + → π + X ), where X is a scalar or pseudo-scalar particle. Details are given of the analysis of the 2018 data sample, which corresponds to about 80% of the total data sample.« less
  4. A bstract A search for the K + → π + X decay, where X is a long-lived feebly interacting particle, is performed through an interpretation of the K + → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ analysis of data collected in 2017 by the NA62 experiment at CERN. Two ranges of X masses, 0–110 MeV /c 2 and 154–260 MeV /c 2 , and lifetimes above 100 ps are considered. The limits set on the branching ratio, BR( K + → π + X ), are competitive with previously reported searches in the first mass range,more »and improve on current limits in the second mass range by more than an order of magnitude.« less
  5. A bstract The NA62 experiment at the CERN SPS reports a study of a sample of 4 × 10 9 tagged π 0 mesons from K + → π + π 0 ( γ ), searching for the decay of the π 0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4 . 4 × 10 − 9 is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model- independent upper limit onmore »the branching ratio for the decay K + → π + X , where X is a particle escaping detection with mass in the range 0.110–0.155 GeV /c 2 and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming X to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson.« less
  6. A bstract The NA62 experiment reports an investigation of the $$ {K}^{+}\to {\pi}^{+}\nu \overline{\nu} $$ K + → π + ν ν ¯ mode from a sample of K + decays collected in 2017 at the CERN SPS. The experiment has achieved a single event sensitivity of (0 . 389 ± 0 . 024) × 10 − 10 , corresponding to 2.2 events assuming the Standard Model branching ratio of (8 . 4 ± 1 . 0) × 10 − 11 . Two signal candidates are observed with an expected background of 1.5 events. Combined with the result of amore »similar analysis conducted by NA62 on a smaller data set recorded in 2016, the collaboration now reports an upper limit of 1 . 78 × 10 − 10 for the $$ {K}^{+}\to {\pi}^{+}\nu \overline{\nu} $$ K + → π + ν ν ¯ branching ratio at 90% CL. This, together with the corresponding 68% CL measurement of ( $$ {0.48}_{-0.48}^{+0.72} $$ 0.48 − 0.48 + 0.72 ) × 10 − 10 , are currently the most precise results worldwide, and are able to constrain some New Physics models that predict large enhancements still allowed by previous measurements.« less
  7. Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability andmore »Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app.« less