skip to main content


Search for: All records

Creators/Authors contains: "Spadaccini, Christopher M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1.  
    more » « less
  2. Graphene is one of the stiffest materials ever measured, and yet foams of this material experience such massive degradation in mechanical properties at low densities that they are worse than polymer foams. (Z. Qin, G. S. Jung, M. J. Kang and M. J. Buehler, Sci. Adv., 2017, 3, e1601536). 3D printed mechanical metamaterials have shown the unprecedented ability to alleviate such degradation, but all current 3D printing techniques capable of printing graphene foam are unable to reproduce the complex metamaterial architectures (e.g. insufficient resolution, toolpath limitations, etc.). Here we demonstrate high-resolution graphene foams incorporating hierarchical architecture which reduces mechanical degradation of graphene foams with decreasing density. Our technique achieves an order-of-magnitude finer resolution and far more intricate structures than any previous method. This technique opens new possibilities not only to enhance graphene foam mechanical properties, but to explore complex architectures and mesoscale effects for other graphene applications including energy storage and conversion, separations, and catalysis. 
    more » « less
  3. Abstract

    Acoustic holograms have promising applications in sound‐field reconstruction, particle manipulation, ultrasonic haptics, and therapy. This study reports on the theoretical, numerical, and experimental investigation of multiplexed acoustic holograms at both audio and ultrasonic frequencies via a rationally designed transmission‐type acoustic metamaterial. The proposed metahologram is composed of two Fabry–Pérot resonant channels per unit cell, which enables the simultaneous modulation of the transmitted amplitude and phase at two desired frequencies. In contrast to conventional acoustic metamaterial‐based holograms, the design strategy proposed here provides a new degree of freedom (frequency) that can actively tailor holograms that are otherwise completely passive and significantly enhances the information encoded in acoustic metamaterials. To demonstrate the multiplexed acoustic metamaterial, the projection of two different high‐quality metaholograms is first shown at 14 and 17 kHz, with the patterns of the letters N and S. Then, two‐channel ultrasound focusing and annular beams generation for the incident ultrasonic frequencies of 35 and 42.5 kHz are demonstrated. These multiplexed acoustic metaholograms offer a technical advance to tackle the rising challenges in the fields of acoustic metamaterials, architectural acoustics, and medical ultrasound.

     
    more » « less
  4. High-resolution 3D printing of intricate graphene aerogel micro-architectures with enhanced mechanical properties at decreasing densities.

     
    more » « less