Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Turf Transplant Experiment was set up in the summer of 2024. Paired experimental sites were established in two tundra community types - dry meadow and moist meadow - with one site of each community type pair in a lower elevation/warmer area and one site in a higher elevation/cooler area. Subplot turfs (25 cm^2) were transplanted (1) between sites of the same community type at different elevations/temperatures, (2) between plots within the same site or (3) left in place as non-transplant controls. This data package contains trait measurements on Bistort individuals.more » « less
-
Anthropogenic climate change is altering interactions among numerous species, including plants and pollinators. Plant-pollinator interactions, crucial for the persistence of most plant and many insect species, are threatened by climate change-driven phenological shifts. Phenological mismatches between plants and their pollinators may affect pollination services, and simulations indicated that these mismatches may reduce floral resources available to up to 50% of insect pollinator species. Although alpine plants rely heavily on vegetative reproduction, seedling recruitment and seed dispersal are likely to be important drivers of alpine community structure. Similarly, advanced flowering may expose plants to increased risk of frost damage and shifted soil moisture regimes; phenologically advanced plants will experience these environmental factors differently, which may alter their floral resource production. These effects may be dependent upon topography. Some species of alpine plants on the Niwot Ridge have displayed advanced phenology under treatments of advanced snowmelt (Forrester, 2021). However, little is understood about how these differences in distribution and phenology affect pollinator community composition and plant fecundity. Here we strive to examine how experimentally-induced changes in the timing of flowering and number of flowers produced by plants impact plant-pollinator interactions and seed set. We also ask how topography and the number of flowers interact with early snowmelt to affect pollination rates and the diversity of pollinating insects. Finally, we ask how seed set of Geum rossii is affected by pollinator visitation at different times of the season, under experimentally advanced snowmelt versus unmanipulated snowmelt, and with visitation by different insect taxa. In summer 2020, we found that plots with advanced phenology experienced peaks in pollinator visitation rates and pollinator diversity earlier than plots with unmanipulated snowmelt. We expect this to be because of the advanced floral phenology of certain key species in these plots. References: Forrester, C.C. (2021). Advancing, Using, and Teaching Climate Change Ecology Research. [Doctoral dissertation, University of Colorado, Boulder]. ProQuest Dissertations and Theses.more » « less
-
Theoretical frameworks of terrestrial community assembly often focus on single trophic levels (e.g. plants) without considering how complex interdependencies across different trophic levels influence assembly mechanisms. Yet, when multiple trophic levels are considered (e.g. plant–pollinator, plant–microbe interactions) the focus is typically on network analyses at local spatial scales. As spatial variation in biodiversity (β‐diversity) is increasingly being recognized for its relevance in understanding community assembly and conservation, considering how β‐diversity at one trophic level may be influenced by assembly processes that alter abundance and composition of interacting communities at a different trophic level (multitrophic dependency) is critical. Here, we build on single trophic level community assembly frameworks to explore the assembly processes affecting β‐diversity in multitrophic communities comprising flowering plants, their bee pollinators, and the corresponding bee‐gut microbiota to better understand the importance of multitrophic dependency in community assembly. Using distance‐based redundancy analysis and variation partitioning, we investigated community assembly processes across three interconnected trophic levels in two ecological regions in southern California: the Santa Monica Mountains and three islands of the Channel Island Archipelago. We found that the deterministic effects of multitrophic dependency are stronger on directly connected trophic levels than on indirectly connected trophic levels (i.e. flowers explain bee communities and bees explain bee‐gut bacteria communities, but flowers weakly explain variation in bee‐gut bacteria communities). We also found notable regional variation, where multitrophic dependency was weaker on the Channel Islands as ecological drift was more pronounced. Our results suggest that integrating the influence of multitrophic dependency on community assembly is important for elucidating drivers of β‐diversity and that multitrophic dependency can be determined by the regional context in which β‐diversity is measured. Taken together, our results highlight the importance of considering multiscale perspectives – both multitrophic and multiregional – in community assembly to fully elucidate assembly processes.more » « lessFree, publicly-accessible full text available April 1, 2026
-
As a result of climate change, the Rocky Mountain Front Range is experiencing warmer summers and earlier snowmelt. Due to the importance of snow for regulating soil temperature, growing season length, and available moisture in alpine ecosystems, even small shifts in the snow-free period could have large impacts. The focus of the Black Sand Extended Growing Season Length Experiment is to examine how terrain-related differences in climate exposure influence the way alpine habitats respond to climate change via earlier snowmelt. To simulate how climate exposure may affect plant communities, NWT LTER researchers established 5 experimental sites each containing a pair 10 x 40m rectangular plots. These sites include north and south facing aspects, subalpine and alpine tundra meadows in a range of hydrological conditions (e.g. dry meadows, moist meadows, wet meadows). We accelerated snowmelt in one plot of each block by adding chemically inert black sand, while keeping the second plot as an unmanipulated control; black sand was added to these plots after snow had naturally melted. This dataset includes geolocations of individual subplots and sensors within the experiment, measured in summer 2023.more » « less
-
Jones, Julia A (Ed.)Abstract Studies of community assembly often explore the role of niche selection in limiting the diversity of functional traits (underdispersion) or increasing the diversity of functional traits (overdispersion) within local communities. While these patterns have primarily been explored with morphological functional traits related to environmental tolerances and resource acquisition, plant metabolomics may provide an additional functional dimension of community assembly to expand our understanding of how niche selection changes along environmental gradients. Here, we examine how the functional diversity of leaf secondary metabolites and traditional morphological plant traits changes along local environmental gradients in three temperate forest ecosystems across North America. Specifically, we asked whether co‐occurring tree species exhibit local‐scale over‐ or underdispersion of metabolomic and morphological traits, and whether differences in trait dispersion among local communities are associated with environmental gradients of soil resources and topography. Across tree species, we find that most metabolomic traits are not correlated with morphological traits, adding a unique dimension to functional trait space. Within forest plots, metabolomic traits tended to be overdispersed while morphological traits tended to be underdispersed. Additionally, local environmental gradients had site‐specific effects on metabolomic and morphological trait dispersion patterns. Taken together, these results show that different suites of traits can result in contrasting patterns of functional diversity along environmental gradients and suggest that multiple community assembly mechanisms operate simultaneously to structure functional diversity in temperate forest ecosystems.more » « less
-
Abstract Accompanying the climate crisis is the more enigmatic biodiversity crisis. Rapid reorganization of biodiversity due to global environmental change has defied prediction and tested the basic tenets of conservation and restoration. Conceptual and practical innovation is needed to support decision making in the face of these unprecedented shifts. Critical questions include: How can we generalize biodiversity change at the community level? When are systems able to reorganize and maintain integrity, and when does abiotic change result in collapse or restructuring? How does this understanding provide a template to guide when and how to intervene in conservation and restoration? To this end, we frame changes in community organization as the modulation of external abiotic drivers on the internal topology of species interactions, using plant–plant interactions in terrestrial communities as a starting point. We then explore how this framing can help translate available data on species abundance and trait distributions to corresponding decisions in management. Given the expectation that community response and reorganization are highly complex, the external‐driver internal‐topology (EDIT) framework offers a way to capture general patterns of biodiversity that can help guide resilience and adaptation in changing environments.more » « less
-
Abstract Bacterial and fungal root endophytes can impact the fitness of their host plants, but the relative importance of drivers for root endophyte communities is not well known. Host plant species, the composition and density of the surrounding plants, space, and abiotic drivers could significantly affect bacterial and fungal root endophyte communities. We investigated their influence in endophyte communities of alpine plants across a harsh high mountain landscape using high-throughput sequencing. There was less compositional overlap between fungal than bacterial root endophyte communities, with four ‘cosmopolitan’ bacterial OTUs found in every root sampled, but no fungal OTUs found across all samples. We found that host plant species, which included nine species from three families, explained the greatest variation in root endophyte composition for both bacterial and fungal communities. We detected similar levels of variation explained by plant neighborhood, space, and abiotic drivers on both communities, but the plant neighborhood explained less variation in fungal endophytes than expected. Overall, these findings suggest a more cosmopolitan distribution of bacterial OTUs compared to fungal OTUs, a structuring role of the plant host species for both communities, and largely similar effects of the plant neighborhood, abiotic drivers, and space on both communities.more » « less
-
null (Ed.)Climate refugia, where local populations of species can persist through periods of unfavorable regional climate, play a key role in the maintenance of regional biodiversity during times of environmental change. However, the ability of refugia to buffer biodiversity change may be mediated by the landscape context of refugial habitats. Here, we examined how plant communities restricted to refugial sky islands of alpine tundra in the Colorado Rockies are changing in response to rapid climate change in the region (increased temperature, declining snowpack, and earlier snow melt-out) and if these biodiversity changes are mediated by the area or geographic isolation of the sky island. We resampled plant communities in 153 plots at seven sky islands distributed across the Colorado Rockies at two time points separated by 12 years (2007/2008–2019/2020) and found changes in taxonomic, phylogenetic, and functional diversity over time. Specifically, we found an increase in species richness, a trend toward increased phylogenetic diversity, a shift toward leaf traits associated with the stress-tolerant end of leaf economics spectrum (e.g., lower specific leaf area, higher leaf dry matter content), and a decrease in the functional dispersion of specific leaf area. Importantly, these changes were partially mediated by refugial area but not by geographic isolation, suggesting that dispersal from nearby areas of tundra does not play a strong role in mediating these changes, while site characteristics associated with a larger area (e.g., environmental heterogeneity, larger community size) may be relatively more important. Taken together, these results suggest that considering the landscape context (area and geographic isolation) of refugia may be critical for prioritizing the conservation of specific refugial sites that provide the most conservation value.more » « less
An official website of the United States government
