skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Spaulding, Matthew C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Background The neural crest‐derived enteric nervous system (ENS) provides the intrinsic innervation of the gut with diverse neuronal subtypes and glial cells. The ENS regulates all essential gut functions, such as motility, nutrient uptake, immune response, and microbiota colonization. Deficits in ENS neuron numbers and composition cause debilitating gut dysfunction. Yet, few studies have identified genes that control neuronal differentiation and the generation of the diverse neuronal subtypes in the ENS. Methods Utilizing existing CRISPR/Cas9 genome editing technology in zebrafish, we have developed a rapid and scalable screening approach for identifying genes that regulate ENS neurogenesis. Key Results As a proof‐of‐concept, F0 guide RNA‐injected larvae (F0 crispants) targeting the known ENS regulator genes sox10 , ret , or phox2bb phenocopied known ENS phenotypes with high efficiency. We evaluated 10 transcription factor candidate genes as regulators of ENS neurogenesis and function. F0 crispants for five of the tested genes have fewer ENS neurons. Secondary assays in F0 crispants for a subset of the genes that had fewer neurons reveal no effect on enteric progenitor cell migration but differential changes in gut motility. Conclusions Our multistep, yet straightforward CRISPR screening approach in zebrafish tests the genetic basis of ENS developmental and disease gene functions that will facilitate the high‐throughput evaluation of candidate genes from transcriptomic, genome‐wide association, or other ENS‐omics studies. Such in vivo ENS F0 crispant screens will contribute to a better understanding of ENS neuronal development regulation in vertebrates and what goes awry in ENS disorders. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026