skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Spaulding, Nicole E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The S27 ice core, drilled in the Allan Hills Blue IceArea of East Antarctica, is located in southern Victoria Land, ∼80 km away from the present-day northern edge of the RossIce Shelf. Here, we utilize the reconstructed accumulation rate of S27covering the Last Interglacial (LIG) period between 129 ka and 116 ka (where ka indicates thousands of years before present) to infer moisture transport into the region. Theaccumulation rate is based on the ice-age–gas-age differences calculatedfrom the ice chronology, which is constrained by the stable water isotopesof the ice, and an improved gas chronology based on measurements of oxygenisotopes of O2 in the trapped gases. The peak accumulation rate in S27occurred at 128.2 ka, near the peak LIG warming in Antarctica. Even the mostconservative estimate yields an order-of-magnitude increase in theaccumulation rate during the LIG maximum, whereas other Antarctic ice coresare typically characterized by a glacial–interglacial difference of a factorof 2 to 3. While part of the increase in S27 accumulation rates mustoriginate from changes in the large-scale atmospheric circulation,additional mechanisms are needed to explain the large changes. Wehypothesize that the exceptionally high snow accumulation recorded in S27reflects open-ocean conditions in the Ross Sea, created by reduced sea iceextent and increased polynya size and perhaps by a southward retreat of theRoss Ice Shelf relative to its present-day position near the onset of the LIG.The proposed ice shelf retreat would also be compatible with a sea-levelhigh stand around 129 ka significantly sourced from West Antarctica. Thepeak in S27 accumulation rates is transient, suggesting that if the Ross IceShelf had indeed retreated during the early LIG, it would have re-advancedby 125 ka. 
    more » « less