skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Spawn-Lee, Seth A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Foliar endophytes play crucial roles in large-scale ecosystem functions such as plant productivity, decomposition, and nutrient cycling. While the possible effects of environmental nutrient supply on the growth and carbon use of endophytic microbes have critical implications for these processes, these impacts are not fully understood. Here, we examined the effects of long-term elevated nitrogen, phosphorus, potassium, and micronutrient (NPKμ) supply on culturable bacterial and fungal foliar endophytes inhabiting the prairie grass Andropogon gerardii. We hypothesized that elevated soil nutrients alter the taxonomic composition and carbon use phenotypes of foliar endophytes and significantly shift the potential for resource competition among microbes within leaves. We observed changes in taxonomic composition and carbon use patterns of fungal, but not bacterial, endophytes of A. gerardii growing in NPKμ-amended versus ambient conditions. Fungal endophytes from NPKμ-amended plants had distinct carbon use profiles and demonstrated greater specialization across carbon sources compared to control plots. Resource niche overlap between bacterial and fungal endophytes also increased with plot nutrient supply, suggesting enhanced potential for inter-kingdom competition. Collectively, this work suggests that soil nutrient enrichment alters how fungal endophyte communities exist in the foliar environment, with potentially significant implications for broad-scale ecosystem function. 
    more » « less
  2. Abstract In post‐fire Siberian larch forests, where tree density can vary within a burn perimeter, shrubs constitute a substantial portion of the vegetation canopy. Leaf area index (LAI), defined as the one‐sided total green leaf area per unit ground surface area, is useful for characterizing variation in plant canopies. We estimated LAI with allometry for trees and tall shrubs (>0.5 and <1.5 m) across 26 sites with varying tree stem density (0.05–3.3 stems/m2) and canopy cover (4.6%–76.9%) in a uniformly‐aged mature Siberian larch forest that regenerated following a fire ∼75 years ago. We investigated relationships between tree density, tree LAI, and tall shrub LAI, and between LAI and satellite observations of Normalized Difference and Enhanced Vegetation Indices (NDVI and EVI). Across the density gradient, tree LAI increases with increasing tree density, while tall shrub LAI decreases, exhibiting no patterns in combined tree‐shrub LAI. We also found significant positive relationships between tall shrub LAI and NDVI/EVI from PlanetScope and Landsat imagery. These findings suggest that tall shrubs compensate for lower tree LAI in tree canopy gaps, forming a canopy with contiguous combined tree‐shrub LAI across the density gradient. Our findings suggest that NDVI and EVI are more sensitive to variation in tall shrub canopies than variation in tree canopies or combined tree‐shrub canopies in these ecosystems. The results improve our understanding of the relationships between forest density and tree and shrub leaf area and have implications for interpreting spatial variability in LAI, NDVI, and EVI in Siberian boreal forests. 
    more » « less
  3. The Renewable Fuel Standard (RFS) specifies the use of biofuels in the United States and thereby guides nearly half of all global biofuel production, yet outcomes of this keystone climate and environmental regulation remain unclear. Here we combine econometric analyses, land use observations, and biophysical models to estimate the realized effects of the RFS in aggregate and down to the scale of individual agricultural fields across the United States. We find that the RFS increased corn prices by 30% and the prices of other crops by 20%, which, in turn, expanded US corn cultivation by 2.8 Mha (8.7%) and total cropland by 2.1 Mha (2.4%) in the years following policy enactment (2008 to 2016). These changes increased annual nationwide fertilizer use by 3 to 8%, increased water quality degradants by 3 to 5%, and caused enough domestic land use change emissions such that the carbon intensity of corn ethanol produced under the RFS is no less than gasoline and likely at least 24% higher. These tradeoffs must be weighed alongside the benefits of biofuels as decision-makers consider the future of renewable energy policies and the potential for fuels like corn ethanol to meet climate mitigation goals. 
    more » « less
  4. Abstract Endophytes often have dramatic effects on their host plants. Characterizing the relationships among members of these communities has focused on identifying the effects of single microbes on their host, but has generally overlooked interactions among the myriad microbes in natural communities as well as potential higher-order interactions. Network analyses offer a powerful means for characterizing patterns of interaction among microbial members of the phytobiome that may be crucial to mediating its assembly and function. We sampled twelve endophytic communities, comparing patterns of niche overlap between coexisting bacteria and fungi to evaluate the effect of nutrient supplementation on local and global competitive network structure. We found that, despite differences in the degree distribution, there were few significant differences in the global network structure of niche-overlap networks following persistent nutrient amendment. Likewise, we found idiosyncratic and weak evidence for higher-order interactions regardless of nutrient treatment. This work provides a first-time characterization of niche-overlap network structure in endophytic communities and serves as a framework for higher-resolution analyses of microbial interaction networks as a consequence and a cause of ecological variation in microbiome function. 
    more » « less