skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 9:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Speir, Shannon L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Across watershed science, two key variables emerge–streamflow and solute concentration–which serve as the basis for efforts ranging from basic watershed biogeochemistry research to policy decisions surrounding watershed management. However, we rarely account for how error in discharge (Q) impacts estimates of downstream nutrient loading. Here, we examined the impact of uncertainty in streamflow measurements on estimates of downstream nitrate export using publicly available data from the U.S. Geological Survey (USGS). We characterized how uncertainty in stage-discharge relationships impacts annual flux estimates across 70 USGS gages. Our results indicate the interquartile range of relative error in Q was 33% across these USGS sites. We documented a wide range in mean error in annual nitrate loads; some sites were underestimated (−105%), while predicted loads at other sites vastly overestimated (500%). Overall, any error in estimating Q leads to significant unpredictability of annual nutrient loads, which are often used as critical success benchmarks for governmental nutrient reduction strategies. Moreover, error in annual nitrate loads (as mass, kg) increases with mean Q; thus, as high flows become more unpredictable and intense under future climate change, error in estimates of downstream nutrient loading may also increase. Together, this indicates that error in Q may drastically influence our measures of water quality success and decrease our ability to accurately quantify progress towards algal bloom and ‘dead zone’ reduction.

    more » « less
  2. Key Points We re‐evaluate equations proposed by Francis Hall to assess concentration‐discharge ( C ‐ Q ) relationships using newly available long‐term and high‐frequency data sets Across time steps we find that log‐log and log‐linear models perform equally well to describe C ‐ Q relationships Parametrization of storage‐discharge relationships via recession analyses provides additional insight to C ‐ Q relationships 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Abstract

    Processes that drive variability in catchment solute sourcing, transformation, and transport can be investigated using concentration–discharge (C–Q) relationships. These relationships reflect catchment and in‐stream processes operating across nested temporal scales, incorporating both short and long‐term patterns. Scientists can therefore leverage catchment‐scale C–Q datasets to identify and distinguish among the underlying meteorological, biological, and geological processes that drive solute export patterns from catchments and influence the shape of their respective C–Q relationships. We have synthesized current knowledge regarding the influence of biological, geological, and meteorological processes on C–Q patterns for various solute types across diel to decadal time scales. We identify cross‐scale linkages and tools researchers can use to explore these interactions across time scales. Finally, we identify knowledge gaps in our understanding of C–Q temporal dynamics as reflections of catchment and in‐stream processes. We also lay the foundation for developing an integrated approach to investigate cross‐scale linkages in the temporal dynamics of C–Q relationships, reflecting catchment biogeochemical processes and the effects of environmental change on water quality.

    This article is categorized under:

    Science of Water > Hydrological Processes

    Science of Water > Water Quality

    Science of Water > Water and Environmental Change

    more » « less