skip to main content

Search for: All records

Creators/Authors contains: "Spencer, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2023
  2. Free, publicly-accessible full text available March 1, 2023
  3. Free, publicly-accessible full text available December 1, 2022
  4. Free, publicly-accessible full text available April 22, 2023
  5. We report the design, fabrication, and characterization of a prototype that meets the form, fit, and function of a household 1.5 V AA battery, but which can be wirelessly recharged without removal from the host device. The prototype system comprises a low-frequency electrodynamic wireless power transmission (EWPT) receiver, a lithium polymer energy storage cell, and a power management circuit (PMC), all contained within a 3D-printed package. The EWPT receiver and overall system are experimentally characterized using a 238 Hz sinusoidal magnetic charging field and either a 1000 µF electrolytic capacitor or a lithium polymer (LiPo) cell as the storage cell.more »The system demonstrates a minimal operating field as low as 50 µTrms (similar in magnitude to Earth’s magnetic field). At this minimum charging field, the prototype transfers a maximum dc current of 50 µA to the capacitor, corresponding to a power delivery of 118 µW. The power effectiveness of the power management system is approximately 49%; with power effectiveness defined as the ratio between actual output power and the maximum possible power the EWPT receiver can transfer to a pure resistive load at a given field strength.« less
  6. We report the design, fabrication, and experimental characterization of a chip-sized electromechanical micro-receiver for low-frequency, near-field wireless power transmission that employs both electrodynamic and piezoelectric transductions to achieve a high power density and high output voltage while maintaining a low profile. The 0.09 cm 3 device comprises a laser-micro-machined titanium suspension, one NdFeB magnet, two PZT-5A piezo-ceramic patches, and a precision-manufactured micro-coil with a thickness of only 1.65 mm. The device generates 520 μW average power (5.5 mW•cm -3 ) at 4 cm distance from a transmitter coil operating at 734.6 Hz and within safe human exposure limits. Compared tomore »a previously reported piezoelectric-only prototype, this device generates ~2.5x higher power and offers 18% increased normalized power density (6.5 mW•cm -3 •mT -2 ) for potential improvement in wirelessly charging wearables and bio-implants.« less
  7. This paper presents the design of a dual-band printed planar antenna for deep space CubeSat communications. The antenna system will be used with a radio for duplex operation in a CubeSat, which can be used for a lunar mission or any deep space mission. While a high-gain CubeSat planar antenna/array is always desired for a deep space mission, high-performance ground stations are also required for robust communication links. For such a mission, the X-band is the appropriate frequency for the downlink communication, which is very challenging in the case of deep space communication compared to the uplink communication. At thismore »frequency, the antenna size can have small enough dimension to form an array to obtain high-gain directional radiations for the successful communication, including telemetry and data download. NASA’s Deep Space Network (DSN) has the largest and most sensitive 70 meterdiameter antenna that can be considered for this type of mission for reliability. DSN has uplink and downlink frequency of operations in 7.1-GHz and 8.4-GHz bands, respectively, which are separated by approximately 1.3 GHz. A straight forward approach is to use two antennas to cover uplink and downlink frequencies. However, CubeSats have huge space constraints to accommodate science instruments and other subsystems and commonly utilize outside faces for solar cells. Therefore, in this paper, we have proposed a planar directional circularly polarized antenna with a single feed that operates at both uplink and downlink DSN frequencies. Simulated 3-dB axial ratio bandwidth of 165 MHz, from 7064 MHz to 7229 MHz for uplink, and that of 183 MHz, from 8325 MHz to 8508 MHz for downlink, are achieved. Also, a wide impedance bandwidth of 23.86% (VSWR < 2) is obtained. From this single probe-fed stacked patch antenna, peak RHCP gain of 9.24 dBic can be achieved.« less