skip to main content


Search for: All records

Creators/Authors contains: "Spisak, Sarah N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An X-ray diffraction study of [6]cycloparaphenylene ( 1 ), crystallized under solvent-free conditions, revealed a unique solid state structure with tight packing of individual molecules that minimizes empty internal space. The controlled chemical reduction of this highly strained nanohoop with Group 1 metals resulted in the first isolation and structural characterization of its mono- and dianions, allowing for the evaluation of core transformations for the series ranging from 1 0 to 1 1− and 1 2− . 
    more » « less
  2. Abstract

    The stepwise chemical reduction of a molecular warped nanographene (WNG) having a negatively curved π‐surface and defined C80H30composition with Cs metal used as the reducing and complexing agent allowed the isolation of three different reduced states with one, two, and three electrons added to itsπ‐conjugated system. This provided a unique series of nanosized carbanions with increasing negative charge for in‐depth structural analysis of consequences of controlled electron charging of non‐planar nanographenes, using X‐ray crystallographic and computational tools. The 3D molecular electrostatic potential (MEP) maps identified the negative charge localization at the central part of the WNG surface where selective coordination of Cs+ions is confirmed crystallographically. In‐depth theoretical investigation revealed a complex response of the WNG to the stepwise electron acquisition. The extended and contorted π‐surface of the WNG undergoes subtle swinging distortions that are accompanied by notable changes in the electronic structure and site‐dependent aromaticity of the resulting carbanions.

     
    more » « less
  3. Abstract

    The stepwise chemical reduction of a molecular warped nanographene (WNG) having a negatively curved π‐surface and defined C80H30composition with Cs metal used as the reducing and complexing agent allowed the isolation of three different reduced states with one, two, and three electrons added to itsπ‐conjugated system. This provided a unique series of nanosized carbanions with increasing negative charge for in‐depth structural analysis of consequences of controlled electron charging of non‐planar nanographenes, using X‐ray crystallographic and computational tools. The 3D molecular electrostatic potential (MEP) maps identified the negative charge localization at the central part of the WNG surface where selective coordination of Cs+ions is confirmed crystallographically. In‐depth theoretical investigation revealed a complex response of the WNG to the stepwise electron acquisition. The extended and contorted π‐surface of the WNG undergoes subtle swinging distortions that are accompanied by notable changes in the electronic structure and site‐dependent aromaticity of the resulting carbanions.

     
    more » « less
  4. Abstract

    Designed site‐directed dimerization of the monoanion radicals of a π‐bowl in the solid state is reported. Dibenzo[a,g]corannulene (C28H14) was selected based on the asymmetry of the charge/spin localization in the C28H14.−anion. Controlled one‐electron reduction of C28H14with Cs metal in diglyme resulted in crystallization of a new dimer, [{Cs+(diglyme)}2(C28H14−C28H14)2−] (1), as revealed by single crystal X‐ray diffraction study performed in a broad range of temperatures. The C−C bond length between two C28H14.−bowls (1.560(8) Å) measured at −143 °C does not significantly change upon heating of the crystal to +67 °C. The single σ‐bond character of the C−C linker is confirmed by calculations. The trans‐disposition of two bowls in1is observed with the torsion angles around the central C−C bond of 172.3(5)° and 173.5(5)°. A systematic theoretical evaluation of dimerization pathways of C28H14.−radicals confirmed that the trans‐isomer found in1is energetically favored.

     
    more » « less
  5. Abstract

    Designed site‐directed dimerization of the monoanion radicals of a π‐bowl in the solid state is reported. Dibenzo[a,g]corannulene (C28H14) was selected based on the asymmetry of the charge/spin localization in the C28H14.−anion. Controlled one‐electron reduction of C28H14with Cs metal in diglyme resulted in crystallization of a new dimer, [{Cs+(diglyme)}2(C28H14−C28H14)2−] (1), as revealed by single crystal X‐ray diffraction study performed in a broad range of temperatures. The C−C bond length between two C28H14.−bowls (1.560(8) Å) measured at −143 °C does not significantly change upon heating of the crystal to +67 °C. The single σ‐bond character of the C−C linker is confirmed by calculations. The trans‐disposition of two bowls in1is observed with the torsion angles around the central C−C bond of 172.3(5)° and 173.5(5)°. A systematic theoretical evaluation of dimerization pathways of C28H14.−radicals confirmed that the trans‐isomer found in1is energetically favored.

     
    more » « less
  6. Abstract

    The dianion and dication of tetramesityl‐substituted tetracyclopentatetraphenylene, a circulene consisting of alternating five‐ and six‐membered rings, have been generated by reduction with alkali metals and oxidation with antimony(V) halides, respectively. They are theoretically predicted to adopt double annulenoid structures called annulene‐within‐an‐annulene models in which the outer and inner conjugation circuits are significantly decoupled. The theoretical structures were experimentally proven by X‐ray crystallographic analyses and the electronic configurations were supported by MCD spectra. Based on the13C NMR chemical shifts, negative and positive charges are shown to be located mainly at the outer periphery, indicating that the dianion and dication have delocalized 22‐π and 18‐π electron outer perimeters, respectively, and 8‐π electron structure at the inner ring. Notably, the dianion has an open‐shell character, whereas the dication has a closed‐shell ground state.

     
    more » « less
  7. Abstract

    The dianion and dication of tetramesityl‐substituted tetracyclopentatetraphenylene, a circulene consisting of alternating five‐ and six‐membered rings, have been generated by reduction with alkali metals and oxidation with antimony(V) halides, respectively. They are theoretically predicted to adopt double annulenoid structures called annulene‐within‐an‐annulene models in which the outer and inner conjugation circuits are significantly decoupled. The theoretical structures were experimentally proven by X‐ray crystallographic analyses and the electronic configurations were supported by MCD spectra. Based on the13C NMR chemical shifts, negative and positive charges are shown to be located mainly at the outer periphery, indicating that the dianion and dication have delocalized 22‐π and 18‐π electron outer perimeters, respectively, and 8‐π electron structure at the inner ring. Notably, the dianion has an open‐shell character, whereas the dication has a closed‐shell ground state.

     
    more » « less