skip to main content


Search for: All records

Creators/Authors contains: "Sprung, Ben"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We found that in the phosphate (PO4)‐depleted western subtropical North Atlantic Ocean, small‐sized pigmented eukaryotes (P‐Euk; < 5 μm) play a central role in the carbon (C) cycling. Although P‐Euk were only ~ 5% of the microbial phytoplankton cell abundance, they represented at least two thirds of the microbial phytoplankton C biomass and fixed more CO2than picocyanobacteria, accounting for roughly half of the volumetric CO2fixation by the microbial phytoplankton, or a third of the total primary production. Cell‐specific PO4assimilation rates of P‐Euk and nonpigmented eukaryotes (NP‐Euk; < 5 μm) were generally higher than of picocyanobacteria. However, when normalized to biovolumes, picocyanobacteria assimilated roughly four times more PO4than small eukaryotes, indicating different strategies to cope with PO4limitation. Our results underline an imbalance in the CO2: PO4uptake rate ratios, which may be explained by phagotrophic predation providing mixotrophic protists with their largest source of PO4. 18S rDNA amplicon sequence analyses suggested that P‐Euk was dominated by members of green algae and dinoflagellates, the latter group commonly mixotrophic, whereas marine alveolates were the dominant NP‐Euk. Bacterivory by P‐Euk (0.9 ± 0.3 bacteria P‐Euk−1h−1) was comparable to values previously measured in the central North Atlantic, indicating that small mixotrophic eukaryotes likely exhibit similar predatory pressure on bacteria. Interestingly, bacterivory rates were reduced when PO4was added during experimental incubations, indicating that feeding rate by P‐Euk is regulated by PO4availability. This may be in response to the higher cost associated with assimilating PO4by phagocytosis compared to osmotrophy.

     
    more » « less