Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Encapsulating Cs4PbBr6 quantum dots in silicon nano-sheets not only stabilizes the halide perovskite, but also takes advantage of the nano-sheet for a compatible integration with the traditional silicon semiconductor. Here, we report the preparation of un-passivated Cs4PbBr6 ellipsoidal nanocrystals and pseudo-spherical quantum dots in silicon nano-sheets and their enhanced photoluminescence (PL). For a sample with low concentrations of quantum dots in silicon nano-sheets, the emission from Cs4PbBr6 pseudo-spherical quantum dots is quenched and is dominated with Pb2+ ion/silicene emission, which is very stable during the whole measurement period. For a high concentration of Cs4PbBr6 ellipsoidal nanocrystals in silicon nano-sheets, we have observed Förster resonance energy transfer with up to 87% efficiency through the oscillation of two PL peaks when UV excitation switches between on and off, using recorded video and PL lifetime measurements. In an area of a non-uniform sample containing both ellipsoidal nanocrystals and pseudo-spherical quantum dots, where Pb2+ ion/silicene emissions, broadband emissions from quantum dots, and bandgap edge emissions (515 nm) appear, the 515 nm peak intensity increases five times over 30 min of UV excitation, probably due to a photon recycling effect. This irradiated sample has been stable for one year of ambient storage. Cs4PbBr6 quantum dots encapsulated in silicon nano-sheets can lead to applications of halide perovskite light emitting diodes (PeLEDs) and integration with traditional semiconductor materials.more » « less
-
null (Ed.)Abstract Monolayer (ML) molybdenum disulfide (MoS₂) is a novel 2-dimensional (2D) semiconductor whose properties have many applications in devices. Despite its potential, ML MoS₂ is limited in its use due to its degradation under exposure to ambient air. Therefore, studies of possible degradation prevention methods are important. It is well established that air humidity plays a major role in the degradation. In this paper, we investigate the effects of substrate hydrophobicity on the degradation of chemical vapor deposition (CVD) grown ML MoS 2 . We use optical microscopy, atomic force microscopy (AFM), and Raman mapping to investigate the degradation of ML MoS 2 grown on SiO 2 and Si 3 N 4 that are hydrophilic and hydrophobic substrates, respectively. Our results show that the degradation of ML MoS₂ on Si 3 N 4 is significantly less than the degradation on SiO 2 . These results show that using hydrophobic substrates to grow 2D transition metal dichalcogenide ML materials may diminish ambient degradation and enable improved protocols for device manufacturing.more » « less
An official website of the United States government
