skip to main content

Search for: All records

Creators/Authors contains: "Sridhara, Shashank N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We introduce chroma subsampling for 3D point cloud attribute compression by proposing a novel technique to sample points irregularly placed in 3D space. While most current video compression standards use chroma subsampling, these chroma subsampling methods cannot be directly applied to 3D point clouds, given their irregularity and sparsity. In this work, we develop a framework to incorporate chroma subsampling into geometry-based point cloud encoders, such as region adaptive hierarchical transform (RAHT) and region adaptive graph Fourier transform (RAGFT). We propose different sampling patterns on a regular 3D grid to sample the points at different rates. We use a simple graph-based nearest neighbor interpolation technique to reconstruct the full resolution point cloud at the decoder end. Experimental results demonstrate that our proposed method provides significant coding gains with negligible impact on the reconstruction quality. For some sequences, we observe a bitrate reduction of 10-15% under the Bjontegaard metric. More generally, perceptual masking makes it possible to achieve larger bitrate reductions without visible changes in quality.
    Free, publicly-accessible full text available May 23, 2023
  2. We present an efficient voxelization method to encode the geometry and attributes of 3D point clouds obtained from autonomous vehicles. Due to the circular scanning trajectory of sensors, the geometry of LiDAR point clouds is inherently different from that of point clouds captured from RGBD cameras. Our method exploits these specific properties to representing points in cylindrical coordinates instead of conventional Cartesian coordinates. We demonstrate that Region Adaptive Hierarchical Transform (RAHT) can be extended to this setting, leading to attribute encoding based on a volumetric partition in cylindrical coordinates. Experimental results show that our proposed voxelization outperforms conventional approaches based on Cartesian coordinates for this type of data. We observe a significant improvement in attribute coding performance with 5-10% reduction in bitrate and octree representation with 35-45% reduction in bits.