skip to main content

Search for: All records

Creators/Authors contains: "Stacey, H. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    We present deep observations of CO (3–2) from the Cloverleaf lensed quasar-starburst at z = 2.56. We discover a 4–5 times less massive companion at a projected distance of 33 kpc from the Cloverleaf host galaxy. The galaxies are connected by a bridge of CO emission, indicating that they are interacting and that the companion is being stripped by the Cloverleaf. We also find evidence for fast molecular gas in the spectral line of the Cloverleaf that may be an outflow induced by stellar or quasar feedback. All of these features may be ubiquitous among quasars and only detected here with the help of gravitational lensing and the sensitivity of the data. Overall, these findings agree with galaxy formation scenarios that predict gas-rich mergers play a key role in quasar triggering, starburst triggering, and the formation of compact spheroids.

    more » « less

    Recent studies have suggested that red quasars are a phase in quasar evolution when feedback from black hole accretion evacuates obscuring gas from the nucleus of the host galaxy. Here, we report a direct link between dust-reddening and molecular outflows in quasars at z ∼ 2.5. By examining the dynamics of warm molecular gas in the inner region of galaxies, we find evidence for outflows with velocities 500–1000 km s−1 and time-scales of ≈0.1 Myr that are due to ongoing quasar energy output. We infer outflows only in systems where quasar radiation pressure on dust in the vicinity of the black hole is sufficiently large to expel their obscuring gas column densities. This result is in agreement with theoretical models that predict radiative feedback regulates gas in the nuclear regions of galaxies and is a major driving mechanism of galactic-scale outflows of cold gas. Our findings suggest that radiative quasar feedback ejects star-forming gas from within nascent stellar bulges at velocities comparable to those seen on larger scales, and that molecules survive in outflows even from the most luminous quasars.

    more » « less
  3. ABSTRACT We present a study of the stellar host galaxy, CO (1–0) molecular gas distribution and AGN emission on 50–500 pc-scales of the gravitationally lensed dust-obscured AGN MG J0751+2716 and JVAS B1938+666 at redshifts 3.200 and 2.059, respectively. By correcting for the lensing distortion using a grid-based lens modelling technique, we spatially locate the different emitting regions in the source plane for the first time. Both AGN host galaxies have 300–500 pc-scale size and surface brightness consistent with a bulge/pseudo-bulge, and 2 kpc-scale AGN radio jets that are embedded in extended molecular gas reservoirs that are 5–20 kpc in size. The CO (1–0) velocity fields show structures possibly associated with discs (elongated velocity gradients) and interacting objects (off-axis velocity components). There is evidence for a decrement in the CO (1–0) surface brightness at the location of the host galaxy, which may indicate radiative feedback from the AGN, or offset star formation. We find CO–H2 conversion factors of around αCO = 1.5 ± 0.5 (K km s−1 pc2)−1, molecular gas masses of >3 × 1010 M⊙, dynamical masses of ∼1011 M⊙, and gas fractions of around 60 per cent. The intrinsic CO line luminosities are comparable to those of unobscured AGN and dusty star-forming galaxies at similar redshifts, but the infrared luminosities are lower, suggesting that the targets are less efficient at forming stars. Therefore, they may belong to the AGN feedback phase predicted by galaxy formation models, because they are not efficiently forming stars considering their large amount of molecular gas. 
    more » « less