skip to main content


Search for: All records

Creators/Authors contains: "Stach, Eric A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Because 3D batteries comprise solid polymer electrolytes (SPE) confined to high surface area porous scaffolds, the interplay between polymer confinement and interfacial interactions on total ionic conductivity must be understood. This paper investigates contributions to the structure-conductivity relationship in poly(ethylene oxide) (PEO)–lithium bis(trifluorosulfonylimide) (LiTFSI) complexes confined to microporous nickel scaffolds. For bulk and confined conditions, PEO crystallinity decreases as the salt concentration (Li+:EO (r) = 0.0.125, 0.0167, 0.025, 0.05) increases. For pure PEO and all r values except 0.05, PEO crystallinity under confinement is lower than in the bulk, whereas glass transition temperature remains statistically invariant. At 298 K (semicrystalline), total ionic conductivity under confinement is higher than in the bulk at r = 0.0167, but remains invariant at r = 0.05; however, at 350 K (amorphous), total ionic conductivity is higher than in the bulk for both salt concentrations. Time–of–flight secondary ion mass spectrometry indicates selective migration of ions towards the polymer–scaffold interface. In summary, for the 3D structure studied, polymer crystallinity, interfacial segregation, and tortuosity play an important role in determining total ionic conductivity and, ultimately, the emergence of 3D SPEs as energy storage materials. 
    more » « less
    Free, publicly-accessible full text available November 4, 2025
  2. Free, publicly-accessible full text available December 1, 2025
  3. Free, publicly-accessible full text available December 10, 2025
  4. Free, publicly-accessible full text available June 1, 2025
  5. Binary kagome compounds TmXn (T = Mn, Fe, Co; X = Sn, Ge; m:n = 3:1, 3:2, 1:1) have garnered recent interest owing to the presence of both topological band crossings and flatbands arising from the geometry of the metal-site kagome lattice. To exploit these electronic features for potential applications in spintronics, the growth of high-quality heterostructures is required. Here, we report the synthesis of Fe/FeSn and Co/FeSn bilayers on Al2O3 substrates using molecular beam epitaxy to realize heterointerfaces between elemental ferromagnetic metals and antiferromagnetic kagome metals. Structural characterization using high-resolution x-ray diffraction, reflection high-energy electron diffraction, and electron microscopy reveals that the FeSn films are flat and epitaxial. Rutherford backscattering spectroscopy was used to confirm the stoichiometric window where the FeSn phase is stabilized, while transport and magnetometry measurements were conducted to verify metallicity and magnetic ordering in the films. Exchange bias was observed, confirming the presence of antiferromagnetic order in the FeSn layers, paving the way for future studies of magnetism in kagome heterostructures and potential integration of these materials into devices.

     
    more » « less
  6. One step pore diffusion mechanism of lithium ion transport in the solid electrolyte interphase (SEI) layer with discrete inorganic components enables the fast lithium conduction without slow solid state diffusion process.

     
    more » « less
  7. Abstract

    Detailed studies of interfacial gas-phase chemical reactions are important for understanding factors that control materials synthesis and environmental conditions that govern materials performance and degradation. Out of the many materials characterization methods that are available for interpreting gas–solid reaction processes,in situandoperandotransmission electron microscopy (TEM) is perhaps the most versatile, multimodal materials characterization technique. It has successfully been utilized to study interfacial gas–solid interactions under a wide range of environmental conditions, such as gas composition, humidity, pressure, and temperature. This stems from decades of R&D that permit controlled gas delivery and the ability to maintain a gaseous environment directly within the TEM column itself or through specialized side-entry gas-cell holders. Combined with capabilities for real-time, high spatial resolution imaging, electron diffraction and spectroscopy, dynamic structural and chemical changes can be investigated to determine fundamental reaction mechanisms and kinetics that occur at site-specific interfaces. This issue ofMRS Bulletincovers research in this field ranging from technique development to the utilization of gas-phase microscopy methods that have been used to develop an improved understanding of multilength-scaled processes incurred during materials synthesis, catalytic reactions, and environmental exposure effects on materials properties.

    Graphical abstract

     
    more » « less