skip to main content


Search for: All records

Creators/Authors contains: "Stalin, C. S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The orientation of the jet axis to the line of sight of the observer plays a major role in explaining the phenomena observed from blazars and radio galaxies. In the γ-ray band, only a handful of radio galaxies have been identified, all being located in the nearby Universe (z < 0.5). Here, we report the identification of 4FGL J1435.5+2021, associated with TXS 1433+205, as a Fanaroff–Riley type II (FR II) radio galaxy at a considerably higher redshift of z = 0.748, thereby making it the most distant γ-ray detected radio galaxy known as of now. The Very Large Array Sky Survey data at 3 GHz resolves the source morphology into a bright core, a jet and two hotspots, with a total end-to-end projected length between lobe extremities of ∼170 kpc. The optical and radio properties of this enigmatic object suggest it to be a high-excitation FR II radio galaxy. The multiwavelength behaviour of TXS 1433+205 is found to be similar to other γ-ray detected FR II sources but is at the high-luminosity end. We suggest that the ongoing and upcoming high-resolution radio surveys will lead to the identification of many more high-redshift radio galaxies in the γ-ray sky, thus allowing comprehensive studies of misaligned relativistic jets.

     
    more » « less
  2. ABSTRACT

    To understand the mass distribution and co-evolution of supermassive black holes with their host galaxy, it is crucial to measure the black hole mass of AGN. Reverberation mapping is a unique tool to estimate the black hole masses in AGN. We performed spectroscopic reverberation study using long-term monitoring data with more than 100 spectra of a radio-loud quasar PKS 0736 + 017 to estimate the size of the broad-line region (BLR) and black hole mass. The optical spectrum shows strong H β and H γ emission lines. We generated the light curves of 5100 Å continuum flux (f5100), H β, and H γ. All the light curves are found to be strongly variable with fractional variability of 69 per cent, 21 per cent, 30 per cent for V-band, H β, and H γ light curves, respectively. Along with the thermal contribution, non-thermal emission contributes to the estimated continuum luminosity at 5100 Å. Using different methods, e.g. CCF, JAVELIN, von-neumann, we estimated the size of the BLR, which is found to be 66.4$^{+6.0}_{-4.2}$ light days in the rest frame. The BLR size combined with the line width of H β provides a black hole mass of 7.32$^{+0.89}_{-0.91} \times 10^{7}M_{\odot }$. The source closely follows the BLR size–luminosity relation of AGN.

     
    more » « less