skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stamerra, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Galaxy clusters are expected to be both dark matter (DM) reservoirs and storage rooms for the cosmic-ray protons (CRp) that accumulate along the cluster's formation history. Accordingly, they are excellent targets to search for signals of DM annihilation and decay atγ-ray energies and are predicted to be sources of large-scaleγ-ray emission due to hadronic interactions in the intracluster medium (ICM).In this paper, we estimate the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuseγ-ray emission from the Perseus galaxy cluster.We first perform a detailed spatial and spectral modelling of the expected signal for both the DM and the CRp components. For each case, we compute the expected CTA sensitivity accounting for the CTA instrument response functions. The CTA observing strategy of the Perseus cluster is also discussed.In the absence of a diffuse signal (non-detection), CTA should constrain the CRp to thermal energy ratioX500within the characteristic radiusR500down to aboutX500< 3 × 10-3, for a spatial CRp distribution that follows the thermal gas and a CRp spectral index αCRp= 2.3. Under the optimistic assumption of a pure hadronic origin of the Perseus radio mini-halo and depending on the assumed magnetic field profile, CTA should measure αCRpdown to about ΔαCRp≃ 0.1 and the CRp spatial distribution with 10% precision, respectively. Regarding DM, CTA should improve the current ground-basedγ-ray DM limits from clusters observations on the velocity-averaged annihilation cross-section by a factor of up to ∼ 5, depending on the modelling of DM halo substructure. In the case of decay of DM particles, CTA will explore a new region of the parameter space, reaching models withτχ> 1027s for DM masses above 1 TeV.These constraints will provide unprecedented sensitivity to the physics of both CRp acceleration and transport at cluster scale and to TeV DM particle models, especially in the decay scenario. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  2. Aims.We have performed the first broadband study of Mrk 421 from radio to TeV gamma rays with simultaneous measurements of the X-ray polarization from IXPE. Methods.The data were collected as part of an extensive multiwavelength campaign carried out between May and June 2022 using MAGIC,Fermi-LAT,NuSTAR,XMM-Newton,Swift, and several optical and radio telescopes to complement IXPE data. Results.During the IXPE exposures, the measured 0.2–1 TeV flux was close to the quiescent state and ranged from 25% to 50% of the Crab Nebula without intra-night variability. Throughout the campaign, the very high-energy (VHE) and X-ray emission are positively correlated at a 4σsignificance level. The IXPE measurements reveal an X-ray polarization degree that is a factor of 2–5 higher than in the optical/radio bands; that implies an energy-stratified jet in which the VHE photons are emitted co-spatially with the X-rays, in the vicinity of a shock front. The June 2022 observations exhibit a rotation of the X-ray polarization angle. Despite no simultaneous VHE coverage being available during a large fraction of the swing, theSwift-XRT monitoring reveals an X-ray flux increase with a clear spectral hardening. This suggests that flares in high synchrotron peaked blazars can be accompanied by a polarization angle rotation, as observed in some flat spectrum radio quasars. Finally, during the polarization angle rotation,NuSTARdata reveal two contiguous spectral hysteresis loops in opposite directions (clockwise and counterclockwise), implying important changes in the particle acceleration efficiency on approximately hour timescales. 
    more » « less
  3. Context.The nearby elliptical galaxy M87 contains one of only two supermassive black holes whose emission surrounding the event horizon has been imaged by the Event Horizon Telescope (EHT). In 2018, more than two dozen multi-wavelength (MWL) facilities (from radio toγ-ray energies) took part in the second M87 EHT campaign. Aims.The goal of this extensive MWL campaign was to better understand the physics of the accreting black hole M87*, the relationship between the inflow and inner jets, and the high-energy particle acceleration. Understanding the complex astrophysics is also a necessary first step towards performing further tests of general relativity. Methods.The MWL campaign took place in April 2018, overlapping with the EHT M87* observations. We present a new, contemporaneous spectral energy distribution (SED) ranging from radio to very high-energy (VHE)γ-rays as well as details of the individual observations and light curves. We also conducted phenomenological modelling to investigate the basic source properties. Results.We present the first VHEγ-ray flare from M87 detected since 2010. The flux above 350 GeV more than doubled within a period of ≈36 hours. We find that the X-ray flux is enhanced by about a factor of two compared to 2017, while the radio and millimetre core fluxes are consistent between 2017 and 2018. We detect evidence for a monotonically increasing jet position angle that corresponds to variations in the bright spot of the EHT image. Conclusions.Our results show the value of continued MWL monitoring together with precision imaging for addressing the origins of high-energy particle acceleration. While we cannot currently pinpoint the precise location where such acceleration takes place, the new VHEγ-ray flare already presents a challenge to simple one-zone leptonic emission model approaches, and it emphasises the need for combined image and spectral modelling. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Abstract Approximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way, detected with a combination of targeted observations and surveys. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from recent observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the three main classes of established Galactic VHE sources (pulsar wind nebulae, young and interacting supernova remnants, and compact binary systems), as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy (pointing pattern and scheduling) based on recent estimations of the instrument performance. We use the improved sky model and observation strategy to simulate GPS data corresponding to a total observation time of 1620 hours spread over ten years. Data are then analysed using the methods and software tools under development for real data. Under our model assumptions and for the realisation considered, we show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, to confirm the existence of a hypothetical population of gamma-ray pulsars with an additional TeV emission component, and to detect bright sources capable of accelerating particles to PeV energies (PeVatrons). Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios.Thus, a survey of the entire Galactic plane carried out from both hemispheres with CTAO will ensure a transformational advance in our knowledge of Galactic VHE source populations and interstellar emission. 
    more » « less
    Free, publicly-accessible full text available October 1, 2025
  5. Free, publicly-accessible full text available January 1, 2026
  6. A search is presented for an extended Higgs sector with two new particles, X and ϕ , in the process X ϕ ϕ ( γ γ ) ( γ γ ) . Novel neural networks classify events with diphotons that are merged and determine the diphoton masses. The search uses LHC proton-proton collision data at s = 13 TeV collected with the CMS detector, corresponding to an integrated luminosity of 138 fb 1 . No evidence of such resonances is seen. Upper limits are set on the production cross section for m X between 300 and 3000 GeV and m ϕ / m X between 0.5% and 2.5%, representing the most sensitive search in this channel. © 2025 CERN, for the CMS Collaboration2025CERN 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  7. Abstract Monochromatic gamma-ray signals constitute a potential smoking gun signature for annihilating or decaying dark matter particles that could relatively easily be distinguished from astrophysical or instrumental backgrounds. We provide an updated assessment of the sensitivity of the Cherenkov Telescope Array (CTA) to such signals, based on observations of the Galactic centre region as well as of selected dwarf spheroidal galaxies. We find that current limits and detection prospects for dark matter masses above 300 GeV will be significantly improved, by up to an order of magnitude in the multi-TeV range. This demonstrates that CTA will set a new standard for gamma-ray astronomy also in this respect, as the world's largest and most sensitive high-energy gamma-ray observatory, in particular due to its exquisite energy resolution at TeV energies and the adopted observational strategy focussing on regions with large dark matter densities. Throughout our analysis, we use up-to-date instrument response functions, and we thoroughly model the effect of instrumental systematic uncertainties in our statistical treatment. We further present results for other potential signatures with sharp spectral features, e.g. box-shaped spectra, that would likewise very clearly point to a particle dark matter origin. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  8. A<sc>bstract</sc> A measurement is performed of Higgs bosons produced with high transverse momentum (pT) via vector boson or gluon fusion in proton-proton collisions. The result is based on a data set with a center-of-mass energy of 13 TeV collected in 2016–2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb−1. The decay of a high-pTHiggs boson to a boosted bottom quark-antiquark pair is selected using large-radius jets and employing jet substructure and heavy-flavor taggers based on machine learning techniques. Independent regions targeting the vector boson and gluon fusion mechanisms are defined based on the topology of two quark-initiated jets with large pseudorapidity separation. The signal strengths for both processes are extracted simultaneously by performing a maximum likelihood fit to data in the large-radius jet mass distribution. The observed signal strengths relative to the standard model expectation are$$ {4.9}_{-1.6}^{+1.9} $$ 4.9 1.6 + 1.9 and$$ {1.6}_{-1.5}^{+1.7} $$ 1.6 1.5 + 1.7 for the vector boson and gluon fusion mechanisms, respectively. A differential cross section measurement is also reported in the simplified template cross section framework. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  9. Abstract Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  10. Abstract This paper describes theCombinesoftware package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to runCombineand reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details ofCombine. However, the online documentation referenced within this paper provides an up-to-date and complete user guide. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025