skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stamoulis, Dimitrios"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 31, 2026
  2. Free, publicly-accessible full text available March 31, 2026
  3. Free, publicly-accessible full text available November 18, 2025
  4. Misinformation regarding climate change is a key roadblock in addressing one of the most serious threats to humanity. This paper investigates factual accuracy in large language models (LLMs) regarding climate information. Using true/false labeled Q&A data for fine-tuning and evaluating LLMs on climate-related claims, we compare open-source models, assessing their ability to generate truthful responses to climate change questions. We investigate the detectability of models intentionally poisoned with false climate information, finding that such poisoning may not affect the accuracy of a model’s responses in other domains. Furthermore, we compare the effectiveness of unlearning algorithms, fine-tuning, and Retrieval-Augmented Generation (RAG) for factually grounding LLMs on climate change topics. Our evaluation reveals that unlearning algorithms can be effective for nuanced conceptual claims, despite previous findings suggesting their inefficacy in privacy contexts. These insights aim to guide the development of more factually reliable LLMs and highlight the need for additional work to secure LLMs against misinformation attacks. 
    more » « less