Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Abstract We provide the first combined cosmological analysis of the South Pole Telescope (SPT) and Planck cluster catalogs. The aim is to provide an independent calibration for Planck scaling relations, exploiting the cosmological constraining power of the SPTSZ cluster catalog and its dedicated weak lensing (WL) and Xray followup observations. We build a new version of the Planck cluster likelihood. In the ν Λ CDM scenario, focusing on the mass slope and mass bias of Planck scaling relations, we find α SZ = 1.49 − 0.10 + 0.07 and 1 − b SZ = 0.69 − 0.14 + 0.07 , respectively. The results for the mass slope show a ∼4 σ departure from the selfsimilar evolution, α SZ ∼ 1.8. This shift is mainly driven by the matter density value preferred by SPT data, Ω m = 0.30 ± 0.03, lower than the one obtained by Planck data alone, Ω m = 0.37 − 0.06 + 0.02 . The mass bias constraints are consistent both with outcomes of hydrodynamical simulations and external WL calibrations, (1 − b ) ∼ 0.8, and with results required by the Planck cosmic microwave background cosmology, (1 − b ) ∼ 0.6. From this analysis,more »Free, publiclyaccessible full text available August 1, 2023

Abstract We show the improvement to cosmological constraints from galaxy cluster surveys with the addition of cosmic microwave background (CMB)cluster lensing data. We explore the cosmological implications of adding mass information from the 3.1 σ detection of gravitational lensing of the CMB by galaxy clusters to the Sunyaev–Zel’dovich (SZ) selected galaxy cluster sample from the 2500 deg 2 SPTSZ survey and targeted optical and Xray followup data. In the ΛCDM model, the combination of the cluster sample with the Planck power spectrum measurements prefers σ 8 Ω m / 0.3 0.5 = 0.831 ± 0.020 . Adding the cluster data reduces the uncertainty on this quantity by a factor of 1.4, which is unchanged whether the 3.1 σ CMBcluster lensing measurement is included or not. We then forecast the impact of CMBcluster lensing measurements with future cluster catalogs. Adding CMBcluster lensing measurements to the SZ cluster catalog of the ongoing SPT3G survey is expected to improve the expected constraint on the dark energy equation of state w by a factor of 1.3 to σ ( w ) = 0.19. We find the largest improvements from CMBcluster lensing measurements to be for σ 8 , where adding CMBcluster lensing data tomore »Free, publiclyaccessible full text available June 1, 2023

ABSTRACT We search for the signature of cosmological shocks in stacked gas pressure profiles of galaxy clusters using data from the South Pole Telescope (SPT). Specifically, we stack the latest Comptony maps from the 2500 deg2 SPTSZ survey on the locations of clusters identified in that same data set. The sample contains 516 clusters with mean mass $\langle M_{\rm 200m}\rangle = 10^{14.9} \, {\rm M}_\odot$ and redshift 〈z〉 = 0.55. We analyse in parallel a set of zoomin hydrodynamical simulations from the three hundred project. The SPTSZ data show two features: (i) a pressure deficit at R/R200m = 1.08 ± 0.09, measured at 3.1σ significance and not observed in the simulations, and; (ii) a sharp decrease in pressure at R/R200m = 4.58 ± 1.24 at 2.0σ significance. The pressure deficit is qualitatively consistent with a shockinduced thermal nonequilibrium between electrons and ions, and the second feature is consistent with accretion shocks seen in previous studies. We split the cluster sample by redshift and mass, and find both features exist in all cases. There are also no significant differences in features along and across the cluster major axis, whose orientation roughly points towards filamentary structure. As a consistency test, we also analyse clusters from the Planck and Atacama Cosmologymore »

Abstract We present componentseparated maps of the primary cosmic microwave background/kinematic Sunyaev–Zel’dovich (SZ) amplitude and the thermal SZ Compton
y parameter, created using data from the South Pole Telescope (SPT) and the Planck satellite. These maps, which cover the ∼2500 deg^{2}of the southern sky imaged by the SPTSZ survey, represent a significant improvement over previous such products available in this region by virtue of their higher angular resolution ( for our highestresolution Compton $1.\prime 25$y maps) and lower noise at small angular scales. In this work we detail the construction of these maps using linear combination techniques, including our method for limiting the correlation of our lowestnoise Comptony map products with the cosmic infrared background. We perform a range of validation tests on these data products to test our sky modeling and combination algorithms, and we find good performance in all of these tests. Recognizing the potential utility of these data products for a wide range of astrophysical and cosmological analyses, including studies of the gas properties of galaxies, groups, and clusters, we make these products publicly available athttp://pole.uchicago.edu/public/data/sptsz_ymap and on the NASA/LAMBDA website. 
ABSTRACT We study the polarization properties of extragalactic sources at 95 and 150 GHz in the SPTpol 500 deg2 survey. We estimate the polarized power by stacking maps at known source positions, and correct for noise bias by subtracting the mean polarized power at random positions in the maps. We show that the method is unbiased using a set of simulated maps with similar noise properties to the real SPTpol maps. We find a fluxweighted meansquared polarization fraction 〈p2〉 = [8.9 ± 1.1] × 10−4 at 95 GHz and [6.9 ± 1.1] × 10−4 at 150 GHz for the full sample. This is consistent with the values obtained for a subsample of active galactic nuclei. For dusty sources, we find 95 per cent upper limits of 〈p2〉95 < 16.9 × 10−3 and 〈p2〉150 < 2.6 × 10−3. We find no evidence that the polarization fraction depends on the source flux or observing frequency. The 1σ upper limit on measured meansquared polarization fraction at 150 GHz implies that extragalactic foregrounds will be subdominant to the CMB E and B mode polarization power spectra out to at least ℓ ≲ 5700 (ℓ ≲ 4700) and ℓ ≲ 5300 (ℓ ≲ 3600), respectively, at 95 (150) GHz.