skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Stankovic, A.M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A high frequency solid-state transformer (SST) proposed by FREEDM centre is an interesting alternative to conventional distribution transformer in microgrids as it supports additional functionalities such as active-reactive power flow control, fault current limitation and voltage regulation. This paper proposes a dynamic phasor based robust control of SST through the modular control of each stage. The control problem is formulated in frequency domain by representing the system states with time varying Fourier coefficients or dynamic phasors (DP). This formulation transforms the oscillating waveforms of ac circuits to constant or slowly varying variables, hence allow the use of PI controller to track the sinusoidal references. For rectifier and inverter stages of SST, dq transformation is applied on DP which facilitates the design of PI controller to smoothen out the ripples in the output voltage waveform. The controller gains are tuned to reject input and load disturbances and attenuate measurement noise using loop shaping and pole assignment technique. The robustness of the controller is assured analytically against parametric uncertainties using small gain theorem. Simulation results are provided to support the proposed control scheme. Hardwarein- Loop (HIL) simulation is carried out on critical stages using Opal-RT and dSPACE simulators to confirm the effectiveness of the proposed scheme. 
    more » « less
  2. This paper analyzes effects of injection frequency selection on performance of position-sensorless algorithms for permanent magnet synchronous motors (PMSMs). The sensitivity with respect to the rotor position of the transfer function between the injected quantity (e.g. voltage) and its response (e.g. current) is explored over a wide frequency range. The paper then presents analytical results that optimize the selection of injection frequency in terms of motor and drive parameters. The frequency selection procedure is based on motor parameters that were obtained experimentally. 
    more » « less