skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stanley, Edward L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Organisms that have repeatedly evolved similar morphologies owing to the same selective pressures provide excellent cases in which to examine specific morphological changes and their relevance to the ecology and evolution of taxa. Hosts of permanent parasites act as an independent evolutionary experiment, as parasites on these hosts are thought to be undergoing similar selective pressures. Parasitic feather lice have repeatedly diversified into convergent ecomorphs in different microhabitats on their avian hosts. We quantified specific morphological characters to determine (i) which traits are associated with each ecomorph, (ii) the quantitative differences between these ecomorphs, and (iii) if there is evidence of displacement among co-occurring lice as might be expected under louse–louse competition on the host. We used nano-computed tomography scan data of 89 specimens, belonging to four repeatedly evolved ecomorphs, to examine their mandibular muscle volume, limb length and three-dimensional head shape data. Here, we find evidence that lice repeatedly evolve similar morphologies as a mechanism to escape host defences, but also diverge into different ecomorphs related to the way they escape these defences. Lice that co-occur with other genera on a host exhibit greater morphological divergence, indicating a potential role of competition in evolutionary divergence. 
    more » « less
  2. Abstract Lygodactylus is the most speciose gekkonid group in Africa, with several additional, candidate species already identified from previous studies. However, in mainland Africa, several groups remain only partially resolved, and there are several taxonomic inconsistencies. Lygodactylus gutturalis was described from Guinea-Bissau in the 1870s and since then, the species has been recorded from West to East Africa, and it is widely distributed through different biomes and ecoregions. However, this taxon has never been studied in detail. In this work, we use an integrative approach, including molecular phylogenetic analysis, morphometrics, skull osteology, and biogeography to provide the first systematic revision of the L. gutturalis species complex. The L. gutturalis complex is a subgroup within the L. picturatus group and includes nine well-differentiated species. We elevate Lygodactylus gutturalis dysmicus to full species status, recognize Lygodactylus depressus as the sister species to L. gutturalis, describe five new species (Lygodactylus kibera sp. nov., Lygodactylus karamoja sp. nov., Lygodactylus mirabundus sp. nov., Lygodactylus leopardinus sp. nov., and Lygodactylus gamblei sp. nov.), and propose an additional candidate species that requires further research. Also, in order to shed light on some taxonomic inconsistencies between the L. gutturalis and Lygodactylus angularis groups, we revisit the L. angularis group, within which we elevate Lygodactylus angularis heeneni and Lygodactylus angularis paurospilus to full species status. The L. gutturalis subgroup diversified during the Late Miocene (between 5–15 Mya), probably as a consequence of multiple vicariant events driven by the expansion of the African savannahs and the establishment of climatic refugia. 
    more » « less
  3. The genus Surangea Chitaley et Sheikh, based on permineralized specimens from the Deccan Intertrappean Beds of central India, was originally considered to represent a fern megasporangium. Reexamination of original material and new specimens has revealed that the structures are capsular fruits with well-defined seeds, rather than megasporangia. We describe Surangea fruits in detail, based on peels and micro-CT scanning, and document its distribution among multiple localities of the Deccan Intertrappean Beds. The fruits are pentacarpellate septicidal capsules with ~8–12 seeds per locule. The seeds are prominently ornamented with parallel ridges and have a curved embryo/endosperm cavity and a prominent aril. This set of features indicates eudicotyledonous affinities for Surangea. In particular, the combination of septicidal capsules, axile placentation and arillate campylotropus seeds suggests affinity with the order Myrtales, but it does not fit cleanly within an extant family. Surangea fruits add to the diversity of angiosperms known from this late Maastrichtian flora. It joins several other fruit types known from the Deccan flora that do not fall neatly into extant families, possibly representing parts of an endemic community that succumbed to environmental stress associated K-Pg boundary events and/or subsequent northward rafting of the Indian subcontinent. 
    more » « less
  4. Pumpkin toadlets lack postural control during jumping due to a physical constraint imposed by semicircular canal size. 
    more » « less
  5. Abstract Scolecophidian snakes have long posed challenges for scholars interested in elucidating their anatomy. The importance, and relative paucity, of high‐quality anatomical data pertaining to scolecophidians was brought into sharp focus in the late 20 th century as part of a controversy over the phylogeny and ecological origin of snakes. The basal position of scolecophidians in the phylogeny of snakes makes their anatomy, behavior, ecology, and evolution especially important for such considerations. The depauperate fossil record for the group meant that advances in understanding their evolutionary history were necessarily tied to biogeographic distributions and anatomical interpretations of extant taxa. Osteological data, especially data pertaining to the skull and mandible, assumed a dominant role in shaping historical and modern perspectives of the evolution of scolecophidians. Traditional approaches to the exploration of the anatomy of these snakes relied heavily upon serial‐sectioned specimens and cleared‐and‐stained specimens. The application of X‐ray computed tomography (CT) to the study of scolecophidians revolutionized our understanding of the osteology of the group, and now, via diffusible iodine‐based contrast‐enhanced computed tomography (diceCT), is yielding data sets on internal soft anatomical features as well. CT data sets replicate many aspects of traditional anatomical preparations, are readily shared with a global community of scholars, and now are available for unique holotype and other rare specimens. The increasing prevalence and relevance of CT data sets is a strong incentive for the establishment and maintenance of permanent repositories for digital data. 
    more » « less
  6. Abstract The impact of preserved museum specimens is transforming and increasing by three-dimensional (3D) imaging that creates high-fidelity online digital specimens. Through examples from the openVertebrate (oVert) Thematic Collections Network, we describe how we created a digitization community dedicated to the shared vision of making 3D data of specimens available and the impact of these data on a broad audience of scientists, students, teachers, artists, and more. High-fidelity digital 3D models allow people from multiple communities to simultaneously access and use scientific specimens. Based on our multiyear, multi-institution project, we identify significant technological and social hurdles that remain for fully realizing the potential impact of digital 3D specimens. 
    more » « less
  7. null (Ed.)
  8. Our ability to visualize and quantify the internal structures of objects via computed tomography (CT) has fundamentally transformed science. As tomographic tools have become more broadly accessible, researchers across diverse disciplines have embraced the ability to investigate the 3D structure-function relationships of an enormous array of items. Whether studying organismal biology, animal models for human health, iterative manufacturing techniques, experimental medical devices, engineering structures, geological and planetary samples, prehistoric artifacts, or fossilized organisms, computed tomography has led to extensive methodological and basic sciences advances and is now a core element in science, technology, engineering, and mathematics (STEM) research and outreach toolkits. Tomorrow's scientific progress is built upon today's innovations. In our data-rich world, this requires access not only to publications but also to supporting data. Reliance on proprietary technologies, combined with the varied objectives of diverse research groups, has resulted in a fragmented tomography-imaging landscape, one that is functional at the individual lab level yet lacks the standardization needed to support efficient and equitable exchange and reuse of data. Developing standards and pipelines for the creation of new and future data, which can also be applied to existing datasets is a challenge that becomes increasingly difficult as the amount and diversity of legacy data grows. Global networks of CT users have proved an effective approach to addressing this kind of multifaceted challenge across a range of fields. Here we describe ongoing efforts to address barriers to recently proposed FAIR (Findability, Accessibility, Interoperability, Reuse) and open science principles by assembling interested parties from research and education communities, industry, publishers, and data repositories to approach these issues jointly in a focused, efficient, and practical way. By outlining the benefits of networks, generally, and drawing on examples from efforts by the Non-Clinical Tomography Users Research Network (NoCTURN), specifically, we illustrate how standardization of data and metadata for reuse can foster interdisciplinary collaborations and create new opportunities for future-looking, large-scale data initiatives. 
    more » « less