Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Multi‐resolution analysis methods can reveal the underlying physical dynamics of nonstationary signals, such as those from lightning. In this paper we demonstrate the application of two multi‐resolution analysis methods: Ensemble Empirical Mode Decomposition (EEMD) and Variational Mode Decomposition (VMD) in a comparative way in the analysis of electric field change waveforms from lightning. EEMD and VMD decompose signals into a set of Intrinsic Mode Functions (IMFs). The IMFs can be combined using distance and divergence metrics to obtain noise reduction or to obtain new waveforms that isolate the physical processes of interest while removing irrelevant components of the original signal. We apply the EEMD and VMD methods to the observations of three close Narrow Bipolar Events (NBEs) that were reported by Rison et al. (2016,
https://doi.org/10.1038/ncomms10721 ). The ΔE observations reveal the occurrence of complex oscillatory processes after the main NBE sferic. We show that both EEMD and VMD are able to isolate the oscillations from the main NBE, with VMD being more effective of the two methods since it requires the least user supervision. The oscillations are found to begin at the end of the NBEs' downward fast positive breakdown, and appear to be produced by a half‐wavelength standing wave within a weakly‐conducting resonant ionization cavity left behind in the wake of the streamer‐based NBE event. Additional analysis shows that one of the NBEs was likely initiated by an energetic cosmic ray shower, and also corrects a misinterpretation in the literature that fast breakdown is an artifact of NBE‐like events in interferometer observations. -
Abstract Simultaneous data from two interferometers separated by 16 km and synchronized within 100 ns were collected for a thunderstorm near Langmuir Lab on October 23, 2018. Analysis via triangulation followed by a least squares fit to time of arrival across all six antennae produced a three‐dimensional interferometer (3DINTF) data set. Simultaneous Lightning Mapping Array data enabled an independent calculation of 3DINTF accuracy, yielding a median location uncertainty of 200 m. This is the most accurate verified result to date for a two‐station interferometer. The 3D data allowed profiling the velocity of multiple dart leaders and K leaders that followed the same channel. 3D velocities calculated from the in‐cloud initiation site to ground ranged from 3 × 106to 20 × 106 m/s. Average velocity generally increased with subsequent leaders, consistent with increased conditioning of the channel. Also, all leaders showed a factor of 2–3 decrease in velocity as they proceeded over 15 km of channel. We speculate that the velocity decrease is consistent with energy lost in the reionization of the channel at the leader tip. This paper includes an appendix providing details of the triangulation technique used.
-
Abstract This paper reports a study to understand the radio spectrum of thunderstorm narrow bipolar events (NBEs) or compact intracloud discharges, which are powerful sources of high‐frequency (HF) and very high frequency (VHF) electromagnetic radiation. The radio spectra from 10 kHz to about 100 MHz are obtained for three NBEs, including one caused by fast positive breakdown and two by fast negative breakdown. The results indicate that the two polarities of fast breakdown have similar spectra, with a relatively flat spectrum in the HF and VHF band. The ratio of energy spectral densities in the very low frequency and HF bands is (0.9–5) × 105. We develop a statistical modeling approach to investigate if a system of streamers can explain the main features of fast breakdown. Assuming that the current moment peak and charge moment change of individual streamers vary in the ranges of 5–10 A‐m and 5–20 μC‐m, respectively, the modeling results indicate that a system of 107–108streamers can reproduce the current moment, charge transfer, and radio spectrum of fast breakdown. The rapid current variation on a time scale of nanoseconds required for fast breakdown to produce strong HF/VHF emissions is provided by exponentially accelerating and expanding streamers. Our study therefore supports the hypothesis that fast breakdown is a system of streamers. Finally, suggestions are given regarding future streamer simulations and NBE measurements in order to further develop our understanding of NBEs and lightning initiation.
-
Abstract The production mechanism for terrestrial gamma ray flashes (TGFs) is not entirely understood, and details of the corresponding lightning activity and thunderstorm charge structure have yet to be fully characterized. Here we examine sub‐microsecond VHF (14–88 MHz) radio interferometer observations of a 247‐kA peak‐current EIP, or energetic in‐cloud pulse, a reliable radio signature of a subset of TGFs. The EIP consisted of three high‐amplitude sferic pulses lasting
≃ 60μ s in total, which peaked during the second (main) pulse. The EIP occurred during a normal‐polarity intracloud lightning flash that was highly unusual, in that the initial upward negative leader was particularly fast propagating and discharged a highly concentrated region of upper‐positive storm charge. The flash was initiated by a high‐power (46 kW) narrow bipolar event (NBE), and the EIP occurred about 3 ms later after≃ 3 km upward flash development. The EIP was preceded≃ 200μ s by a fast6 × 106 m/s upward negative breakdown and immediately preceded and accompanied by repeated sequences of fast (107 –108 m/s) downward then upward streamer events each lasting 10 to 20μ s, which repeatedly discharged a large volume of positive charge. Although the repeated streamer sequences appeared to be a characteristic feature of the EIP and were presumably involved in initiating it, the EIP sferic evolved independently of VHF‐producing activity, supporting the idea that the sferic was produced by relativistic discharge currents. Moreover, the relativistic currents during the main sferic pulse initiated a strong NBE‐like event comparable in VHF power (115 kW) to the highest‐power NBEs.