- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Stark, Emily (4)
-
Graeber, Marius (1)
-
Gupta, Radhika (1)
-
Karrer, Annette (1)
-
Lazarovich, Nir (1)
-
Levcovitz, Ivan (1)
-
Margolis, Alexander (1)
-
Schreve, Kevin (1)
-
Woodhouse, Daniel J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A subset of vertices of a graph is minimal if, within all subsets of the same size, its vertex boundary is minimal. We give a complete, geometric characterization of minimal sets for the planar integer lattice $$X$$. Our characterization elucidates the structure of all minimal sets, and we are able to use it to obtain several applications. We show that the neighborhood of a minimal set is minimal. We characterize uniquely minimal sets of $$X$$: those which are congruent to any other minimal set of the same size. We also classify all efficient sets of $$X$$: those that have maximal size amongst all such sets with a fixed vertex boundary. We define and investigate the graph $$G$$ of minimal sets whose vertices are congruence classes of minimal sets of $$X$$ and whose edges connect vertices which can be represented by minimal sets that differ by exactly one vertex. We prove that G has exactly one infinite component, has infinitely many isolated vertices and has bounded components of arbitrarily large size. Finally, we show that all minimal sets, except one, are connected.more » « less
-
Graeber, Marius; Karrer, Annette; Lazarovich, Nir; Stark, Emily (, Topology and its Applications)null (Ed.)
-
Stark, Emily; Woodhouse, Daniel J (, International Mathematics Research Notices)Abstract Sela proved that every torsion-free one-ended hyperbolic group is co-Hopfian. We prove that there exist torsion-free one-ended hyperbolic groups that are not commensurably co-Hopfian. In particular, we show that the fundamental group of every simple surface amalgam is not commensurably co-Hopfian.more » « less
-
Schreve, Kevin; Stark, Emily (, Groups, Geometry, and Dynamics)null (Ed.)
An official website of the United States government
