skip to main content


Search for: All records

Creators/Authors contains: "Starkey, Kyler"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Process optimization for directed-energy-deposition, an industrial laser-based additive manufacturing technique, is a time-intensive endeavor for manufacturers. Herein we investigate the use of a modified analytical process-model based on powder-bed-fusion techniques, to predict quality build parameters by incorporating the effects of three key parameters: laser-power, scanning-speed, and powder flowrate. Titanium alloy (Ti6Al4V) tracks of varying parameters were built, studied, and used to predict parameters for quality builds used at different parameters. The model agreed well with experimental build quality at powder flowrates less than 6.5g/min, whereas, higher flowrates created significant unmelted-particle regions, despite optimal parameter predictions. Processing of multi-layer bulk samples revealed that parameters in the optimal range account for relative densities >99%, indicating quality bulk processing parameters. Our results indicate that process modeling with the incorporation of powder feedrate as a key parameter is possible using a commercial laser-based additive manufacturing system. 
    more » « less