skip to main content

Search for: All records

Creators/Authors contains: "Starr, T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this study, different hatch spacings were used to fabricate single layer and multiple layers, and its effect on porosity was investigated by using microcomputed tomography. The combination of laser power (100 W, 150 W, 175 W, and 195W) and scan speeds (600 mm/s, 800 mm/s, 1000 mm/s and 1200 mm/s) which resulted in the least number of pores were selected from the previous single-track experiment. Six levels of hatch spacings were selected based on the track width to form single and multiple layers: 60%, 70%, 80%, 90%, 120% and 150% of track widths. For the multilayer build, the variation in keyhole porosity within the given window of parameters were found to be attributed to the variation in the hatch spacing. In general, the pore number decreased with increase in hatch spacing from 60% to 90% but increased when hatch spacing further increased from 90% to 120%.