skip to main content


Search for: All records

Creators/Authors contains: "Starrett, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The recognition and delineation of cryptic species remains a perplexing problem in systematics, evolution, and species delimitation. Once recognized as such, cryptic species complexes provide fertile ground for studying genetic divergence within the context of phenotypic and ecological divergence (or lack thereof). Herein we document the discovery of a new cryptic species of trapdoor spider,Promyrmekiaphila korematsuisp. nov. Using subgenomic data obtained via target enrichment, we document the phylogeography of the California endemic genusPromyrmekiaphilaand its constituent species, which also includesP. clathrataandP. winnemem. Based on these data we show a pattern of strong geographic structuring among populations but cannot entirely discount recent gene flow among populations that are parapatric, particularly for deeply diverged lineages withinP. clathrata. The genetic data, in addition to revealing a new undescribed species, also allude to a pattern of potential phenotypic differentiation where species likely come into close contact. Alternatively, phenotypic cohesion among genetically divergentP. clathratalineages suggests that some level of gene flow is ongoing or occurred in the recent past. Despite considerable field collection efforts over many years, additional sampling in potential zones of contact for both species and lineages is needed to completely resolve the dynamics of divergence inPromyrmekiaphilaat the population–species interface.

     
    more » « less
  2. Abstract

    Higher-level classifications often must account for monotypic taxa representing depauperate evolutionary lineages and lacking synapomorphies of their better-known, well-defined sister clades. In a ranked (Linnean) or unranked (phylogenetic) classification system, discovering such a depauperate taxon does not necessarily invalidate the rank classification of sister clades. Named higher taxa must be monophyletic to be phylogenetically valid. Ranked taxa above the species level should also maximize information content, diagnosability, and utility (e.g., in biodiversity conservation). In spider classification, families are the highest rank that is systematically catalogued, and incertae sedis is not allowed. Consequently, it is important that family-level taxa be well defined and informative. We revisit the classification problem of Orbipurae, an unranked suprafamilial clade containing the spider families Nephilidae, Phonognathidae, and Araneidae sensu stricto. We argue that, to maximize diagnosability, information content, conservation utility, and practical taxonomic considerations, this “splitting” scheme is superior to its recently proposed alternative, which lumps these families together as Araneidae sensu lato. We propose to redefine Araneidae and recognize a monogeneric spider family, Paraplectanoididae fam. nov. to accommodate the depauperate lineage Paraplectanoides. We present new subgenomic data to stabilize Orbipurae topology which also supports our proposed family-level classification. Our example from spiders demonstrates why classifications must be able to accommodate depauperate evolutionary lineages, for example, Paraplectanoides. Finally, although clade age should not be a criterion to determine rank, other things being equal, comparable ages of similarly ranked taxa do benefit comparative biology. [Classification, family rank, phylogenomics, systematics, monophyly, spider phylogeny.]

     
    more » « less
  3. Abstract

    The diversity of biological and ecological characteristics of organisms, and the underlying genetic patterns and processes of speciation, makes the development of universally applicable genetic species delimitation methods challenging. Many approaches, like those incorporating the multispecies coalescent, sometimes delimit populations and overestimate species numbers. This issue is exacerbated in taxa with inherently high population structure due to low dispersal ability, and in cryptic species resulting from nonecological speciation. These taxa present a conundrum when delimiting species: analyses rely heavily, if not entirely, on genetic data which over split species, while other lines of evidence lump. We showcase this conundrum in the harvesterTheromaster brunneus, a low dispersal taxon with a wide geographic distribution and high potential for cryptic species. Integrating morphology, mitochondrial, and sub-genomic (double-digest RADSeq and ultraconserved elements) data, we find high discordance across analyses and data types in the number of inferred species, with further evidence that multispecies coalescent approaches over split. We demonstrate the power of a supervised machine learning approach in effectively delimiting cryptic species by creating a “custom” training data set derived from a well-studied lineage with similar biological characteristics asTheromaster. This novel approach uses known taxa with particular biological characteristics to inform unknown taxa with similar characteristics, using modern computational tools ideally suited for species delimitation. The approach also considers the natural history of organisms to make more biologically informed species delimitation decisions, and in principle is broadly applicable for taxa across the tree of life.

     
    more » « less
  4. Abstract

    Species delimitation is an imperative first step toward understanding Earth's biodiversity, yet what constitutes a species and the relative importance of the various processes by which new species arise continue to be debatable. Species delimitation in spiders has traditionally used morphological characters; however, certain mygalomorph spiders exhibit morphological homogeneity despite long periods of population‐level isolation, absence of gene flow, and consequent high degrees of molecular divergence. Studies have shown strong geographic structuring and significant genetic divergence among several species complexes within the trapdoor spider genusAptostichus, most of which are restricted to the California Floristic Province (CAFP) biodiversity hotspot. Specifically, theAptostichus icenogleicomplex, which comprises the three sibling species,A. barackobamai,A. isabella, andA. icenoglei, exhibits evidence of cryptic mitochondrial DNA diversity throughout their ranges in Northern, Central, and Southern California. Our study aimed to explicitly test species hypotheses within this assemblage by implementing a cohesion species‐based approach. We used genomic‐scale data (ultraconserved elements, UCEs) to first evaluate genetic exchangeability and then assessed ecological interchangeability of genetic lineages. Biogeographical analysis was used to assess the likelihood of dispersal versus vicariance events that may have influenced speciation pattern and process across the CAFP's complex geologic and topographic landscape. Considering the lack of congruence across data types and analyses, we take a more conservative approach by retaining species boundaries withinA. icenoglei.

     
    more » « less
  5. Whitfield, James (Ed.)
    Abstract We report here the discovery of a remarkable new monotypic mygalomorph spider genus, known only from one geographical location along the central coast of California. The single relict species comprising Cryptocteniza kawtakn. gen. n. sp., is morphologically distinct and geographically isolated from other related genera, with its closest phylogenetic relatives found much further to the east in New Mexico and Arizona. Using a phylogenomic approach employing anchored hybrid enrichment, we reconstruct the evolutionary history of the family Euctenizidae Raven, 1985 to explore relationships among genera, affirmatively place previously undescribed taxa, explore rates of diversification, and reconstruct the group’s biogeography. A biogeographic analysis shows that extinction likely played a significant role in shaping the observed disjunct modern-day distribution of Cryptocteniza and its sister taxa. Our extinction hypothesis is further bolstered by a diversification rate analysis identifying considerably higher rates of speciation in other euctenizid lineages like AptostichusSimon, 1891. Consequently, changes in environmental conditions (or other related biotic and/or abiotic factors) may have spurred an adaptive radiation in related genera now widely distributed across the California Floristic Province biodiversity hotspot, with concomitant extinction in Cryptocteniza following the Miocene and establishment of a Mediterranean climate. Owing to its phylogenetic distinctiveness, incredibly narrow distribution and age, we show that Cryptocteniza meets all the criteria of an ‘Endangered Living Fossil’ and is consequently of grave conservation concern. 
    more » « less
  6. Abstract

    Understanding the relative importance of different sources of selection (e.g., the environment, social/sexual selection) on the divergence or convergence of reproductive communication can shed light on the origin, maintenance, or even disappearance of species boundaries. Using a multistep approach, we tested the hypothesis that two presumed sister species of wolf spider with overlapping ranges and microhabitat use, yet differing degrees of sexual dimorphism, have diverged in their reliance on modality‐specific courtship signaling. We predicted that maleSchizocosa crassipalpata(no ornamentation) rely predominantly on diet‐dependent vibratory signaling for mating success. In contrast, we predicted that maleS. bilineata(black foreleg brushes) rely on diet‐dependent visual signaling. We first tested and corroborated the sister‐species relationship betweenS. crassipalpataandS. bilineatausing phylogenomic scale data. Next, we tested for species‐specific, diet‐dependent vibratory and visual signaling by manipulating subadult diet and subsequently quantifying adult morphology and mature male courtship signals. As predicted, vibratory signal form was diet‐dependent inS. crassipalpata,while visual ornamentation (brush area) was diet‐dependent inS. bilineata. We then compared the species‐specific reliance on vibratory and visual signaling by recording mating across artificially manipulated signaling environments (presence/absence of each modality in a 2 × 2 full factorial design). In accordance with our diet dependence results forS. crassipalpata,the presence of vibratory signaling was important for mating success. In contrast, the light and vibratory environment interacted to influence mating success inS. bilineata,with vibratory signaling being important only in the absence of light. We found no differences in overall activity patterns. Given that these species overlap in much of their range and microhabitat use, we suggest that competition for signaling space may have led to the divergence and differential use of sensory modalities between these sister species.

     
    more » « less
  7. Abstract

    Animals communicate using a diversity of signals produced by a wide array of physical structures. Determining how a signal is produced provides key insights into signal evolution. Here, we examine a complex vibratory mating display produced by maleSchizocosa floridanawolf spiders. This display contains three discrete substrate‐borne acoustic components (known as “thumps”, “taps”, and “chirps”), each of which is anecdotally associated with the movement of a different body part (the pedipalps, legs, and abdomen respectively). In order to determine the method of production, we employ a combination of high‐speed video/audio recordings and SEM imaging of possible sound‐producing structures. Previous work has suggested that the “chirp” component is tonal, a signal trait that would be potentially unique in the genus. We measured signal tonality for all courtship components, as well as for courtship components from sixteen otherSchizocosawolf spiders. Our results suggest thatS. floridanaproduces courtship song using a combination of shared (palpal stridulation and foreleg percussion) and novel (abdominal movement) sound production mechanisms. Of particular interest, the “chirp”, which is produced using a novel abdominal production mechanism, is the only known tonal signal with acoustic properties that are unique within the genus. We argue that the potential evolution of a novel sound production mechanism has opened up a new axis of signaling trait space in this species, with important implications for how this signal is likely to function and evolve.

     
    more » « less
  8. Abstract

    The integration of ecological niche modelling into phylogeographic analyses has allowed for the identification and testing of potential refugia under a hypothesis‐based framework, where the expected patterns of higher genetic diversity in refugial populations and evidence of range expansion of nonrefugial populations are corroborated with empirical data. In this study, we focus on a montane‐restricted cryophilic harvestman,Sclerobunus robustus, distributed throughout the heterogeneous Southern Rocky Mountains and Intermontane Plateau of southwestern North America. We identified hypothetical refugia using ecological niche models (ENMs) across three time periods, corroborated these refugia with population genetic methods using double‐digest RAD‐seq data and conducted population‐level phylogenetic and divergence dating analyses. ENMs identify two large temporally persistent regions in the mid‐latitude highlands. Genetic patterns support these two hypothesized refugia with higher genetic diversity within refugial populations and evidence for range expansion in populations found outside hypothesized refugia. Phylogenetic analyses identify five to six genetically divergent, geographically cohesive clades ofS. robustus. Divergence dating analyses suggest that these separate refugia date to the Pliocene and that divergence between clades pre‐dates the late Pleistocene glacial cycles, while diversification within clades was likely driven by these cycles. Population genetic analyses reveal effects of both isolation by distance (IBD) and isolation by environment (IBE), with IBD more important in the continuous mountainous portion of the distribution, while IBE was stronger in the populations inhabiting the isolated sky islands of the south. Using model‐based coalescent approaches, we find support for postdivergence migration between clades from separate refugia.

     
    more » « less