- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Stathopoulos, Andreas (3)
-
Chen, Yu (1)
-
Liu, Zhenming (1)
-
Ma, Yuchen (1)
-
Mccombs, James (1)
-
Ren, Bin (1)
-
Skon, Lucca (1)
-
Wu, Lingfei (1)
-
Xue, Fei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Distributed matrix-block-vector multiplication (Matvec) algorithm is a critical component of many applications, but can be computationally challenging for dense matrices of dimension \(O(10^6\text{--}10^7)\) and blocks of \(O(10\text{--}100)\) vectors. We present performance analysis, implementation, and optimization of our \pname{} library for Matvec under the effect of system variability. Our modeling shows that 1D pipelining Matvec is as efficient as 2D algorithms at small to medium clusters, which are sufficient for these problem sizes. We develop a performance tracing framework and a simulator that reveal pipeline bubbles caused by modest \textasciitilde{}5\% system variability. To tolerate such variability, our \pname{} library, which combines on-the-fly kernel matrix generation and Matvec, integrates four optimizations: inter-process data preloading, unconventional static thread scheduling, cache-aware tiling, and multi-version unrolling. In our benchmarks on \(O(10^5)\) Matvec problems, \pname{} achieves up to 1.85× speedup over COSMA and 17× over ScaLAPACK. For \(O(10^6)\) problems, where COSMA and ScaLAPACK exceed memory capacity, \pname{} maintains linear strong scaling and achieves peak performance of 75\%~FMA~Flop/s. Its static scheduling policy has a 2.27× speedup compared to the conventional work-stealing dynamic scheduler, and is predicted to withstand up to 108\% performance variability under exponential distributed variability simulation.more » « lessFree, publicly-accessible full text available January 31, 2027
-
Chen, Yu; Skon, Lucca; Mccombs, James; Liu, Zhenming; Stathopoulos, Andreas (, ACM)
-
Wu, Lingfei; Xue, Fei; Stathopoulos, Andreas (, SIAM Journal on Scientific Computing)
An official website of the United States government
