skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Statt, Antonia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sequence-controlled copolymers can self-assemble into a wide assortment of complex architectures, with exciting applications in nanofabrication and personalized medicine. However, polymer synthesis is notoriously imprecise, and stochasticity in both chemical synthesis and self-assembly poses a significant challenge to tight control over these systems. While it is increasingly viable to design “protein-like” sequences, specifying each individual monomer in a chain, the effect of variability within those sequences has not been well studied. In this work, we performed nearly 15[thin space (1/6-em)]000 molecular dynamics simulations of sequence-controlled copolymer aggregates with varying level of sequence stochasticity. We utilized unsupervised learning to characterize the resulting morphologies and found that sequence variation leads to relatively smooth and predictable changes in morphology compared to ensembles of identical chains. Furthermore, structural response to sequence variation was accurately modeled using supervised learning, revealing several interesting trends in how specific families of sequences break down as monomer sequences become more variable. Our work presents a way forward in understanding and controlling the effect of sequence variation in sequence-controlled copolymer systems, which can hopefully be used to design advanced copolymer systems for technological applications in the future. 
    more » « less
    Free, publicly-accessible full text available February 17, 2026
  2. Codes and data for "Large language models design sequence-defined macromolecules via evolutionary optimization" Note this repository contains codes and data files for the manuscript. This is a snapshot of the repository, frozen at the time of submission. Codes: LLM codes, other algorithms, postprocessing, visualization Data files: prompts, models, embeddings, LLM responses 
    more » « less
  3. Rigid bodies, made of smaller composite beads, are commonly used to simulate anisotropic particles with molecular dynamics or Monte Carlo methods. To accurately represent the particle shape and to obtain smooth and realistic effective pair interactions between two rigid bodies, each body may need to contain hundreds of spherical beads. Given an interacting pair of particles, traditional molecular dynamics methods calculate all the inter-body distances between the beads of the rigid bodies within a certain distance. For a system containing many anisotropic particles, these distance calculations are computationally costly and limit the attainable system size and simulation time. However, the effective interaction between two rigid particles should only depend on the distance between their center of masses and their relative orientation. Therefore, a function capable of directly mapping the center of mass distance and orientation to the interaction energy between the two rigid bodies would completely bypass inter-bead distance calculations. It is challenging to derive such a general function analytically for almost any non-spherical rigid body. In this study, we have trained neural nets, powerful tools to fit nonlinear functions to complex datasets, to achieve this task. The pair configuration (center of mass distance and relative orientation) is taken as an input, and the energy, forces, and torques between two rigid particles are predicted directly. We show that molecular dynamics simulations of cubes and cylinders performed with forces and torques obtained from the gradients of the energy neural-nets quantitatively match traditional simulations that use composite rigid bodies. Both structural quantities and dynamic measures are in agreement, while achieving up to 23 times speedup over traditional molecular dynamics, depending on hardware and system size. The method presented here can, in principle, be applied to any irregular concave or convex shape with any pair interaction, provided that sufficient training data can be obtained. 
    more » « less