skip to main content

Search for: All records

Creators/Authors contains: "Staub, Mark C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Crystallization is incommensurate with nanoscale curved space due to the lack of three dimensional translational symmetry of the latter. Herein, we report the formation of single-crystal-like, nanosized polyethylene (PE) capsules using a miniemulsion solution crystallization method. The miniemulsion was formed at elevated temperatures using PE organic solution as the oil phase and sodium dodecyl sulfate as the surfactant. Subsequently, cooling the system stepwisely for controlled crystallization led to the formation of hollow, nanosized PE crystalline capsules, which are named as crystalsomes since they mimic the classical self-assembled structures such as liposome, polymersome and colloidosome. We show that the formation of the nanosized PE crystalsomes is driven by controlled crystallization at the curved liquid/liquid interface of the miniemulson droplet. The morphology, structure and mechanical properties of the PE crystalsomes were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and atomic force spectroscopy. Electron diffraction showed the single-crystal-like nature of the crystalsomes. The incommensurateness between the nanocurved interface and the crystalline packing led to reduced crystallinity and crystallite size of the PE crystalsome, as observed from the X-ray diffraction measurements. Moreover, directly quenching the emulsion below the spinodal line led to the formation of hierarchical porous PE crystalsomes due to the coupling of the PE crystallization and liquid/liquid phase separation. We anticipate that this unique crystalsome represents a new type of nanostructure that might be used as nanodrug carriers and ultrasound contrast agents. 
    more » « less
  3. Abstract

    Block copolymers (BCPs) are of growing interest because of their extensive utility in tissue engineering, particularly in biomimetic approaches where multifunctionality is critical. We synthesized polycaprolactone‐polyacrylic acid (PCL‐b‐PAA) BCP and crystallized it onto PCL nanofibers, making BCP nanofiber shish kebab (BCP NFSK) structures. When mineralized in 2× simulated body fluid, BCP NFSK mimic the structure of mineralized collagen fibrils. We hypothesized that the addition of a calcium phosphate layer of graded roughness on the nano‐structure of the nanofiber shish kebabs would enhance preosteoblast alkaline phosphatase (ALP) activity, which has been shown to be a critical component in bone matrix formation. The objectives in the study were to investigate the effect of mineralization on cell proliferation and ALP activity, and to also investigate the effect of BCP NFSK periodicity, a structural feature describing the distance between PCL‐b‐PAA crystals on the nanofiber core, on cell proliferation, and ALP activity. ALP activity of cells cultured on the mineralized BCP NFSK template was significantly higher than the nonmineralized BCP NFSK templates. Interestingly, no statistical difference was observed in ALP activity when the periodic varied, indicating that surface chemistry seemed to play a larger role than the surface roughness.

    more » « less
  4. Abstract

    Spherical crystals are ubiquitous in nature and the necessary breaks in translational symmetry not seen in flat crystals render them structurally unique. Polymer crystals have been shown to exhibit nonflat morphologies, but control over their formation is difficult to achieve. One strategy is directing the crystallization by spatially and/or temporally tuning chain segmental mobility. This has been studied early on using polymer blends or polymer/solvent systems where coupling liquid–liquid phase separation with crystallization could provide morphological control. In this Trend article, a recent trend in using miniemulsion systems to act as nanoscale confinement on chain segmental mobility is reviewed. The confinement at this length scale causes unique features to arise in ordering processes such as liquid–liquid phase separation and crystallization that are not observed at the macroscale. The generality of this approach makes it a good candidate to direct the formation of new and unique hierarchical polymer nanostructures that could be utilized in numerous applications.

    more » « less