skip to main content


Search for: All records

Creators/Authors contains: "Stauffer, Beth A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The use of nutrients by diverse phytoplankton communities in estuarine systems, and their response to changes in physical and biogeochemical processes in these natural systems, is a significant ongoing area of research. We used a whole ecosystem 15NO3− tracer experiment to determine the uptake of different nitrogen (N) forms in phytoplankton functional groups over a mid- to neap tidal cycle in a salt marsh creek in Plum Island Estuary, Massachusetts, USA. We quantified the biomass and δ15N for three groups corresponding to micro- (20–200 μm; microP), nano- (3–20 μm; nanoP), and picophytoplankton (< 3 μm; picoP). All three size classes showed distinct use of recycled N sources throughout the 11-day sampling period and minimal direct assimilation of the 15NO3− tracer. MicroP consistently used high amounts of creek-derived 15NH4+, even with a shift at neap tide from diatom- to dinoflagellate-dominated communities (including members of the harmful genus Alexandrium). NanoP use of recycled 15NH4+ increased over the mid-neap tidal cycle, while picoP use decreased. Both biomass and NH4+ use (as highest δ15N values) of all size groups were maximized during neap tide. This study demonstrates partitioning of recycled N use among size-based phytoplankton groups in the estuary, with distinct effects of tidal cycle on the nutrient uptake of each group, and with important implications for the roles of diverse phytoplankton communities in estuarine nutrient cycling. 
    more » « less
  2. Abstract

    Hurricane Harvey delivered over 124 trillion liters of freshwater to the Texas–Louisiana coast and the northwestern Gulf of Mexico (GOM) in late August‐early September 2017. Environmental conditions, size‐fractionated phytoplankton biomass, and pico‐ and nanoplankton abundances (picocyanobacteria, picoeukaryotes, autotrophic, and heterotrophic nanoplankton) were characterized along nearshore‐offshore transects prior to Hurricane Harvey (late July 2017) and in the 3 weeks to 6 months following the storm (September 2017 to March 2018). To understand the extent to which observed changes in the aquatic environment and plankton communities could be attributed to Hurricane Harvey (vs. seasonal or interannual variability), salinity, temperature, and phytoplankton biomass from historical data (2006–2018) were also analyzed. Nearshore stations from September and October 2017 showed significantly lower salinities and overall phytoplankton biomass compared to historical data. Inorganic nitrogen concentrations were minimal in October. Pico‐ and nanoplankton abundances were lower in September and October than prior to the storm, with the exception of picocyanobacteria. In contrast, post‐storm biomass at mid‐shelf stations was within the historical average, while pico‐ and nanoplankton abundances were higher. Offshore stations showed little change in biomass or abundances following the storm. Pre‐storm assemblages of pico‐ and nanoplankton in July 2017 were distinct from those in post‐storm months, and variance in these assemblages and specific group abundances was tied to inorganic nutrients, salinity, and temperature. These results point to significant changes in important members of the plankton that occurred in GOM continental shelf waters following a major hurricane, with important implications for oceanic food webs and biogeochemical cycles.

     
    more » « less
  3. Coastal ecosystems display consistent patterns of trade-offs between resistance and resilience to tropical cyclones. 
    more » « less
  4. Abstract Tropical cyclones play an increasingly important role in shaping ecosystems. Understanding and generalizing their responses is challenging because of meteorological variability among storms and its interaction with ecosystems. We present a research framework designed to compare tropical cyclone effects within and across ecosystems that: a) uses a disaggregating approach that measures the responses of individual ecosystem components, b) links the response of ecosystem components at fine temporal scales to meteorology and antecedent conditions, and c) examines responses of ecosystem using a resistance–resilience perspective by quantifying the magnitude of change and recovery time. We demonstrate the utility of the framework using three examples of ecosystem response: gross primary productivity, stream biogeochemical export, and organismal abundances. Finally, we present the case for a network of sentinel sites with consistent monitoring to measure and compare ecosystem responses to cyclones across the United States, which could help improve coastal ecosystem resilience. 
    more » « less