skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Stearns, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Developing techniques to infer the behavior of networked social systems has attracted a lot of attention in the literature. Using a discrete dynamical system to model a networked social system, the problem of inferring the behavior of the system can be formulated as the problem of learning the local functions of the dynamical system. We investigate the problem assuming an active form of interaction with the system through queries. We consider two classes of local functions (namely, symmetric and threshold functions) and two interaction modes, namely batch (where all the queries must be submitted together) and adaptive (where the set of queries submitted at a stage may rely on the answers to previous queries). We establish bounds on the number of queries under both batch and adaptive query modes using vertex coloring and probabilistic methods. Our results show that a small number of appropriately chosen queries are provably sufficient to correctly learn all the local functions. We develop complexity results which suggest that, in general, the problem of generating query sets of minimum size is computationally intractable. We present efficient heuristics that produce query sets under both batch and adaptive query modes. Also, we present a query compaction algorithm that identifies and removes redundant queries from a given query set. Our algorithms were evaluated through experiments on over 20 well-known networks. 
    more » « less
  2. Many papers have addressed the problem of learning the behavior (i.e., the local interaction function at each node) of a networked system through active queries, assuming that the network topology is known. We address the problem of inferring both the network topology and the behavior of such a system through active queries. Our results are for systems where the state of each node is from {0, 1} and the local functions are Boolean. We present inference algorithms under both batch and adaptive query models for dynamical systems with symmetric local functions. These algorithms show that the structure and behavior of such dynamical systems can be learnt using only a polynomial number of queries. Further, we establish a lower bound on the number of queries needed to learn such dynamical systems. We also present experimental results obtained by running our algorithms on synthetic and real-world networks. 
    more » « less
  3. We investigate questions related to the time evolution of discrete graph dynamical systems where each node has a state from {0,1}. The configuration of a system at any time instant is a Boolean vector that specifies the state of each node at that instant. We say that two configurations are similar if the Hamming distance between them is small. Also, a predecessor of a configuration B is a configuration A such that B can be reached in one step from A. We study problems related to the similarity of predecessor configurations from which two similar configurations can be reached in one time step. We address these problems both analytically and experimentally. Our analytical results point out that the level of similarity between predecessors of two similar configurations depends on the local functions of the dynamical system. Our experimental results, which consider random graphs as well as small world networks, rely on the fact that the problem of finding predecessors can be reduced to the Boolean Satisfiability problem (SAT). 
    more » « less
  4. null (Ed.)
    Using a discrete dynamical system model for a networked social system, we consider the problem of learning a class of local interaction functions in such networks. Our focus is on learning local functions which are based on pairwise disjoint coalitions formed from the neighborhood of each node. Our work considers both active query and PAC learning models. We establish bounds on the number of queries needed to learn the local functions under both models.We also establish a complexity result regarding efficient consistent learners for such functions. Our experimental results on synthetic and real social networks demonstrate how the number of queries depends on the structure of the underlying network and number of coalitions. 
    more » « less
  5. Nested canalyzing functions (NCFs) are a class of Boolean functions which are used to model certain biological phenomena. We derive a complete characterization of NCFs with the largest average sensitivity, expressed in terms of a simple structural property of the NCF. This characterization provides an alternate, but elementary, proof of the tight upper bound on the average sensitivity of any NCF established by Klotz et al. (2013). We also utilize the characterization to derive a closed form expression for the number of NCFs that have the largest average sensitivity. 
    more » « less
  6. Discrete graphical dynamical systems serve as effective formal models in many contexts, including simulations of agent-based models, propagation of contagions in social networks and study of biological phenomena. A class of Boolean functions, called nested canalyzing functions (NCFs), has been used as a good model of certain biological phenomena. Motivated by these biological applications, we study a variety of analysis problems for synchronous graphical dynamical systems (SyDSs) over the Boolean domain, where each local function is an NCF. Each analysis problem involves testing whether the phase space of a given SyDS satisfies a certain property. We present intractability results for some properties as well as efficient algorithms for others. In several cases, our results clearly delineate intractable and efficiently solvable versions of problems 
    more » « less