Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Parental effects, or parental phenotypes affecting offspring phenotypes, are widespread across taxa, yet there is significant variation within species regarding which offspring traits are affected. One reason for this observed variation could be the type of sensory cues present in the parental environment. By exposing parents to sensory cues containing different information about the same ecological stressor, we can determine whether information is integrated differently by parents based on cue type, leading to differential trait development in offspring. In this study, we utilized predator cues, which can be found in isolation and in combination in natural settings, to test whether cue type plays a role in differential phenotype expression in Trinidadian guppies, Poecilia reticulata. Parents were exposed to predator cues (visual, olfactory or both combined) over 14 days, after which we assessed life history traits, morphology and activity. Offspring were then raised with no predator cues and tested for morphology and activity in adulthood. No differences in life history traits were observed across 10 weeks. In line with previous findings, behaviour differed in both the parent and F1 generations in response to predator cues; however, effects were dependent on cue type and sex. Our results suggest that exposure to even a single sensory cue is strong enough to initiate a cascade of responses both in parent and F1 generations, and that interacting factors such as cue type and sex lend importance to understanding consequences of parent risk perception for offspring.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Abstract Environmental enrichment (EE) often increases positive behavioral and physiological effects on captive animals. Fish are commercially and scientifically important taxa that have been shown to benefit from EE. Here we examined the effects of both short‐ and long‐term EE in Trinidadian guppies (
Poecilia reticulata ). In the short‐term exposure to EE, female guppies were raised in standard conditions, and after reaching adulthood were moved to either an enriched or a deprived environment for 2 weeks. Long‐term exposure guppies were reared from birth for 12 weeks (until sexual maturity) in either an enriched or deprived environment. We then assessed growth, brain size, and neophobic and exploratory behaviors in standard assays. Guppies given EE were bolder, regardless of timescale, although females showed a more pronounced change in behaviors than males. We further found that guppies reared with EE were smaller yet had larger relative brain sizes than guppies reared under deprived conditions. Here we highlight that EE had influenced growth, brain size, neophobic, and exploratory behaviors in guppies, and behavioral changes were observed after only 2 weeks. Our results highlight the need for assessing the influences of EE in captivity, in particular for researchers studying cognition and behavior. -
Addressing climate change and biodiversity loss will be the defining ecological, political, and humanitarian challenge of our time. Alarmingly, policymakers face a narrowing window of opportunity to prevent the worst impacts, necessitating complex decisions about which land to set aside for biodiversity preservation. Yet, our ability to make these decisions is hindered by our limited capacity to predict how species will respond to synergistic drivers of extinction risk. We argue that a rapid integration of biogeography and behavioral ecology can meet these challenges because of the distinct, yet complementary levels of biological organization they address, scaling from individuals to populations, and from species and communities to continental biotas. This union of disciplines will advance efforts to predict biodiversity’s responses to climate change and habitat loss through a deeper understanding of how biotic interactions and other behaviors modulate extinction risk, and how responses of individuals and populations impact the communities in which they are embedded. Fostering a rapid mobilization of expertise across behavioral ecology and biogeography is a critical step toward slowing biodiversity loss.more » « less
-
Abstract Motherhood is characterized by dramatic changes in brain and behavior, but less is known about fatherhood. Here we report that male sticklebacks—a small fish in which fathers provide care—experience dramatic changes in neurogenomic state as they become fathers. Some genes are unique to different stages of paternal care, some genes are shared across stages, and some genes are added to the previously acquired neurogenomic state. Comparative genomic analysis suggests that some of these neurogenomic dynamics resemble changes associated with pregnancy and reproduction in mammalian mothers. Moreover, gene regulatory analysis identifies transcription factors that are regulated in opposite directions in response to a territorial challenge versus during paternal care. Altogether these results show that some of the molecular mechanisms of parental care might be deeply conserved and might not be sex-specific, and suggest that tradeoffs between opposing social behaviors are managed at the gene regulatory level.