skip to main content

Search for: All records

Creators/Authors contains: "Steinmacher, Igor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Research within sociotechnical domains, such as Software Engineering, fundamentally requires the human perspective. Nevertheless, traditional qualitative data collection methods suffer from difficulties in participant recruitment, scaling, and labor intensity. This vision paper proposes a novel approach to qualitative data collection in software engineering research by harnessing the capabilities of artificial intelligence (AI), especially large language models (LLMs) like ChatGPT and multimodal foundation models. We explore the potential of AI-generated synthetic text as an alternative source of qualitative data, discussing how LLMs can replicate human responses and behaviors in research settings. We discuss AI applications in emulating humans in interviews, focus groups, surveys, observational studies, and user evaluations. We discuss open problems and research opportunities to implement this vision. In the future, an integrated approach where both AI and human-generated data coexist will likely yield the most effective outcomes. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. Free, publicly-accessible full text available April 12, 2025
  3. Machine Learning (ML) is increasingly gaining significance for end- user programmer (EUP) applications. However, machine learning end-user programmers (ML-EUPs) without the right background face a daunting learning curve and a heightened risk of mistakes and flaws in their models. In this work, we designed a conversa- tional agent named “Newton” as an expert to support ML-EUPs. Newton’s design was shaped by a comprehensive review of existing literature, from which we identified six primary challenges faced by ML-EUPs and five strategies to assist them. To evaluate the efficacy of Newton’s design, we conducted a Wizard of Oz within-subjects study with 12 ML-EUPs. Our findings indicate that Newton effec- tively assisted ML-EUPs, addressing the challenges highlighted in the literature. We also proposed six design guidelines for future conversational agents, which can help other EUP applications and software engineering activities. 
    more » « less
    Free, publicly-accessible full text available February 6, 2025
  4. Effectively onboarding newcomers is essential for the success of open source projects. These projects often provide onboarding guidelines in their ‘CONTRIBUTING’ files (e.g., on GitHub). These files explain, for example, how to find open tasks, implement solutions, and submit code for review. However, these files often do not follow a standard structure, can be too large, and miss barriers commonly found by newcomers. In this paper, we propose an automated approach to parse these CONTRIBUTING files and assess how they address onboarding barriers. We manually classified a sample of files according to a model of onboarding bar- riers from the literature, trained a machine learning classifier that automatically predicts the categories of each paragraph (precision: 0.655, recall: 0.662), and surveyed developers to investigate their perspective of the predictions’ adequacy (75% of the predictions were considered adequate). We found that CONTRIBUTING files typically do not cover the barriers newcomers face (52% of the analyzed projects missed at least 3 out of the 6 barriers faced by newcomers; 84% missed at least 2). Our analysis also revealed that information about choosing a task and talking with the community, two of the most recurrent barriers newcomers face, are neglected in more than 75% of the projects. We made available our classifier as an online service that analyzes the content of a given CONTRIBUTING file. Our approach may help community builders identify missing information in the project ecosystem they maintain and newcomers can understand what to expect in CONTRIBUTING files. 
    more » « less
    Free, publicly-accessible full text available November 30, 2024
  5. Open source software (OSS) development offers a unique opportunity for students in Software Engineering to experience and participate in large-scale software development, however, the impact of such courses on students' self-efficacy and the challenges faced by students are not well understood. This paper aims to address this gap by analyzing data from multiple instances of OSS development courses at universities in different countries and reporting on how students' self-efficacy changed as a result of taking the course, as well as the barriers and challenges faced by students. 
    more » « less