Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context.X-ray surveys combined with optical follow-up observations are used to generate complete flux-limited samples of the main X-ray emitting source classes. eROSITA on the Spectrum-Roentgen-Gamma mission provides sufficient sensitivity to build significantly enhanced samples of rare X-ray emitting sources. Aims.We strive to identify and classify compact white dwarf binaries, cataclysmic variables (CVs), and related objects, which were detected in the sky area of eFEDS, the eROSITA Final Equatorial Depths Survey, and they were observed in the plate program of SDSS-V. Methods.Compact white dwarf binaries were selected from spectra obtained in the early SDSS-V plate program. A dedicated set of SDSS plate observations were carried out in the eFEDS field, providing spectroscopic classifications for a significant fraction of the optically bright end (r< 22.5) of the X-ray sample. The identification and subclassification rests on visual inspections of the SDSS spectra, spectral variability, color-magnitude and color-color diagrams involving optical and X-ray fluxes, optical variability, and literature work. Results.Upon visual inspection of SDSS spectra and various auxiliary data products, we have identified 26 accreting compact white dwarf binaries (aCWDBs) in eFEDS, of which 24 are proven X-ray emitters. Among those 26 objects, there are 12 dwarf novae, three WZ Sge-like disk-accreting nonmagnetic CVs with low accretion rates, five likely nonmagnetic high accretion rate nova-like CVs, two magnetic CVs of the polar subcategory, and three double degenerates (AM CVn objects). Period bouncing candidates and magnetic systems are rarer than expected in this sample, but it is too small for a thorough statistical analysis. Fourteen of the systems are new discoveries, of which five are fainter than theGaiamagnitude limit. Thirteen aCWDBs have measured or estimated orbital periods, of which five were presented here. Through a Zeeman analysis, we revise the magnetic field estimate of the polar system J0926+0105, which is likely a low-field polar atB= 16 MG. We quantified the success of X-ray versus optical/UV selection of compact white dwarf binaries which will be relevant for the full SDSS-V survey. We also identified six white dwarf main sequence (WDMS) systems, among them there is one confirmed pre-CV at an orbital period of 17.6 h and another pre-CV candidate. Conclusions.This work presents successful initial work in building large samples of all kinds of accreting and X-ray emitting compact white dwarf binaries that will be continued over the full hemisphere in the years to come.more » « less
-
null (Ed.)Chromospheric Ca II activity cycles are frequently found in late-type stars, but no systematic programs have been created to search for their coronal X-ray counterparts. The typical time scale of Ca II activity cycles ranges from years to decades. Therefore, long-lasting missions are needed to detect the coronal counterparts. The XMM-Newton satellite has so far detected X-ray cycles in five stars. A particularly intriguing question is at what age (and at what activity level) X-ray cycles set in. To this end, in 2015 we started the X-ray monitoring of the young solar-like star ɛ Eridani, previously observed on two occasions: in 2003 and in early 2015, both by XMM-Newton . With an age of 440 Myr, it is one of the youngest solar-like stars with a known chromospheric Ca II cycle. We collected the most recent Mount Wilson S-index data available for ɛ Eridani, starting from 2002, including previously unpublished data. We found that the Ca II cycle lasts 2.92 ± 0.02 yr, in agreement with past results. From the long-term XMM-Newton lightcurve, we find clear and systematic X-ray variability of our target, consistent with the chromospheric Ca II cycle. The average X-ray luminosity is 2 × 10 28 erg s −1 , with an amplitude that is only a factor of 2 throughout the cycle. We apply a new method to describe the evolution of the coronal emission measure distribution of ɛ Eridani in terms of solar magnetic structures: active regions, cores of active regions, and flares covering the stellar surface at varying filling fractions. Combinations of these three types of magnetic structures can only describe the observed X-ray emission measure of ɛ Eridani if the solar flare emission measure distribution is restricted to events in the decay phase. The interpretation is that flares in the corona of ɛ Eridani last longer than their solar counterparts. We ascribe this to the lower metallicity of ɛ Eridani. Our analysis also revealed that the X-ray cycle of ɛ Eridani is strongly dominated by cores of active regions. The coverage fraction of cores throughout the cycle changes by the same factor as the X-ray luminosity. The maxima of the cycle are characterized by a high percentage of covering fraction of the flares, consistent with the fact that flaring events are seen in the corresponding short-term X-ray lightcurves predominately at the cycle maxima. The high X-ray emission throughout the cycle of ɛ Eridani is thus explained by the high percentage of magnetic structures on its surface.more » « less
-
Free, publicly-accessible full text available September 1, 2026
-
This paper presents a search for massive, charged, long-lived particles with the ATLAS detector at the Large Hadron Collider using an integrated luminosity of $$140~fb^{−1}$$ of proton-proton collisions at $$\sqrt{s}=13$$~TeV. These particles are expected to move significantly slower than the speed of light. In this paper, two signal regions provide complementary sensitivity. In one region, events are selected with at least one charged-particle track with high transverse momentum, large specific ionisation measured in the pixel detector, and time of flight to the hadronic calorimeter inconsistent with the speed of light. In the other region, events are selected with at least two tracks of opposite charge which both have a high transverse momentum and an anomalously large specific ionisation. The search is sensitive to particles with lifetimes greater than about 3 ns with masses ranging from 200 GeV to 3 TeV. The results are interpreted to set constraints on the supersymmetric pair production of long-lived R-hadrons, charginos and staus, with mass limits extending beyond those from previous searches in broad ranges of lifetimemore » « lessFree, publicly-accessible full text available July 1, 2026
-
This report presents a comprehensive collection of searches for new physics performed by the ATLAS Collaboration during the Run~2 period of data taking at the Large Hadron Collider, from 2015 to 2018, corresponding to about 140~$$^{-1}$$ of $$\sqrt{s}=13$$~TeV proton--proton collision data. These searches cover a variety of beyond-the-standard model topics such as dark matter candidates, new vector bosons, hidden-sector particles, leptoquarks, or vector-like quarks, among others. Searches for supersymmetric particles or extended Higgs sectors are explicitly excluded as these are the subject of separate reports by the Collaboration. For each topic, the most relevant searches are described, focusing on their importance and sensitivity and, when appropriate, highlighting the experimental techniques employed. In addition to the description of each analysis, complementary searches are compared, and the overall sensitivity of the ATLAS experiment to each type of new physics is discussed. Summary plots and statistical combinations of multiple searches are included whenever possible.more » « lessFree, publicly-accessible full text available April 22, 2026
-
Top-quark pair production is observed in lead–lead ( ) collisions at at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of . Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross section is , with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the preequilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early Universe. © 2025 CERN, for the ATLAS Collaboration2025CERNmore » « lessFree, publicly-accessible full text available April 1, 2026
-
A<sc>bstract</sc> A study of the Higgs boson decaying into bottom quarks (H→$$ b\overline{b} $$ ) and charm quarks (H→$$ c\overline{c} $$ ) is performed, in the associated production channel of the Higgs boson with aWorZboson, using 140 fb−1of proton-proton collision data at$$ \sqrt{s} $$ = 13 TeV collected by the ATLAS detector. The individual production ofWHandZHwithH→$$ b\overline{b} $$ is established with observed (expected) significances of 5.3 (5.5) and 4.9 (5.6) standard deviations, respectively. Differential cross-section measurements of the gauge boson transverse momentum within the simplified template cross-section framework are performed in a total of 13 kinematical fiducial regions. The search for theH→$$ c\overline{c} $$ decay yields an observed (expected) upper limit at 95% confidence level of 11.5 (10.6) times the Standard Model prediction. The results are also used to set constraints on the charm coupling modifier, resulting in|κc| <4.2 at 95% confidence level. Combining theH→$$ b\overline{b} $$ andH→$$ c\overline{c} $$ measurements constrains the absolute value of the ratio of Higgs-charm and Higgs-bottom coupling modifiers (|κc/κb|) to be less than 3.6 at 95% confidence level.more » « lessFree, publicly-accessible full text available April 1, 2026
-
The ATLAS experiment has developed extensive software and distributed computing systems for Run 3 of the LHC. These systems are described in detail, including software infrastructure and workflows, distributed data and workload management, database infrastructure, and validation. The use of these systems to prepare the data for physics analysis and assess its quality are described, along with the software tools used for data analysis itself. An outlook for the development of these projects towards Run 4 is also provided.more » « lessFree, publicly-accessible full text available March 6, 2026
-
A<sc>bstract</sc> Differential measurements of Higgs boson production in theτ-lepton-pair decay channel are presented in the gluon fusion, vector-boson fusion (VBF),VHand$$ t\overline{t}H $$ associated production modes, with particular focus on the VBF production mode. The data used to perform the measurements correspond to 140 fb−1of proton-proton collisions collected by the ATLAS experiment at the LHC. Two methods are used to perform the measurements: theSimplified Template Cross-Section(STXS) approach and anUnfolded Fiducial Differentialmeasurement considering only the VBF phase space. For the STXS measurement, events are categorized by their production mode and kinematic properties such as the Higgs boson’s transverse momentum ($$ {p}_{\textrm{T}}^{\textrm{H}} $$ ), the number of jets produced in association with the Higgs boson, or the invariant mass of the two leading jets (mjj). For the VBF production mode, the ratio of the measured cross-section to the Standard Model prediction formjj> 1.5 TeV and$$ {p}_{\textrm{T}}^{\textrm{H}} $$ > 200 GeV ($$ {p}_{\textrm{T}}^{\textrm{H}} $$ < 200 GeV) is$$ {1.29}_{-0.34}^{+0.39} $$ ($$ {0.12}_{-0.33}^{+0.34} $$ ). This is the first VBF measurement for the higher-$$ {p}_{\textrm{T}}^{\textrm{H}} $$ criteria, and the most precise for the lower-$$ {p}_{\textrm{T}}^{\textrm{H}} $$ criteria. Thefiducialcross-section measurements, which only consider the kinematic properties of the event, are performed as functions of variables characterizing the VBF topology, such as the signed ∆ϕjjbetween the two leading jets. The measurements have a precision of 30%–50% and agree well with the Standard Model predictions. These results are interpreted in the SMEFT framework, and place the strongest constraints to date on the CP-odd Wilson coefficient$$ {c}_{H\overset{\sim }{W}} $$ .more » « lessFree, publicly-accessible full text available March 1, 2026
-
A search is performed for dark matter particles produced in association with a resonantly produced pair of b-quarks with 30 < mbb < 150 GeV using 140 fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the LHC. This signature is expected in extensions of the standard model predicting the production of dark matter particles, in particular those containing a dark Higgs boson s that decays into bb¯. The highly boosted s → bb¯ topology is reconstructed using jet reclustering and a new identification algorithm. This search places stringent constraints across regions of the dark Higgs model parameter space that satisfy the observed relic density, excluding dark Higgs bosons with masses between 30 and 150 GeV in benchmark scenarios with Z0 mediator masses up to 4.8 TeV at 95% confidence level.more » « lessFree, publicly-accessible full text available March 1, 2026
An official website of the United States government
