Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Proximity ligation assays (PLAs) use specific antibodies to detect endogenous protein‐protein interactions. PLAs are a highly useful biochemical technique that allow two proteins within proximity to be visualized with fluorescent probes amplified by PCR. While this technique has gained prominence, the use of a PLA in mouse skeletal muscle (SkM) is novel. In this article, we discuss how the PLA method can be used in SkM to study the protein‐protein interactions within mitochondria‐endoplasmic reticulum contact sites (MERCs). © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Proximity ligation assay for skeletal muscle tissue and myoblast for MERC proteinsmore » « lessFree, publicly-accessible full text available February 1, 2026
-
Abstract OPA1 is a dynamin‐related GTPase that modulates mitochondrial dynamics and cristae integrity. Humans carry eight different isoforms of OPA1 and mice carry five, all of which are expressed as short‐ or long‐form isoforms. These isoforms contribute to OPA1's ability to control mitochondrial energetics and DNA maintenance. However, western blot isolation of all long and short isoforms of OPA1 can be difficult. To address this issue, we developed an optimized western blot protocol based on improving running time to isolate five different isoforms of OPA1 in mouse cells and tissues. This protocol can be applied to study changes in mitochondrial structure and function. © 2025 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Western Blot Protocol for Isolating OPA1 Isoforms in Mouse Primary Skeletal Muscle Cellsmore » « lessFree, publicly-accessible full text available February 1, 2026
-
In the Age of Machine Learning Cryo‐EM Research is Still Necessary: A Path toward Precision MedicineAbstract Machine learning has proven useful in analyzing complex biological data and has greatly influenced the course of research in structural biology and precision medicine. Deep neural network models oftentimes fail to predict the structure of complex proteins and are heavily dependent on experimentally determined structures for their training and validation. Single‐particle cryogenic electron microscopy (cryoEM) is also advancing the understanding of biology and will be needed to complement these models by continuously supplying high‐quality experimentally validated structures for improvements in prediction quality. In this perspective, the significance of structure prediction methods is highlighted, but the authors also ask, what if these programs cannot accurately predict a protein structure important for preventing disease? The role of cryoEM is discussed to help fill the gaps left by artificial intelligence predictive models in resolving targetable proteins and protein complexes that will pave the way for personalized therapeutics.more » « less
-
Three-dimensional mitochondria reconstructions of murine cardiac muscle changes in size across agingThis article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.more » « less
-
Abstract Serial block face scanning electron microscopy (SBF‐SEM), also referred to as serial block‐face electron microscopy, is an advanced ultrastructural imaging technique that enables three‐dimensional visualization that provides largerx‐ andy‐axis ranges than other volumetric EM techniques. While SEM is first introduced in the 1930s, SBF‐SEM is developed as a novel method to resolve the 3D architecture of neuronal networks across large volumes with nanometer resolution by Denk and Horstmann in 2004. Here, the authors provide an accessible overview of the advantages and challenges associated with SBF‐SEM. Beyond this, the applications of SBF‐SEM in biochemical domains as well as potential future clinical applications are briefly reviewed. Finally, the alternative forms of artificial intelligence‐based segmentation which may contribute to devising a feasible workflow involving SBF‐SEM, are also considered.more » « less