Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Perovskite oxide heterostructures host a large number of interesting phenomena such as ferroelectricity, which are often driven by octahedral distortions in the crystal that may induce polarization. SrHfO3 (SHO) is a perovskite oxide with a pseudocubic lattice parameter of 4.08 Å that previous density functional theory (DFT) calculations suggest can be stabilized in a ferroelectric P4mm phase when stabilized with sufficient compressive strain. Additionally, it is insulating and possesses a large band gap and a high dielectric constant, making it an ideal candidate for oxide electronic devices. To test the viability of epitaxial strain as a driver of ferroic phase transitions, SHO films were grown by hybrid molecular beam epitaxy (hMBE) with a tetrakis(ethylmethylamino)hafnium(IV) source on GdScO3 and TbScO3 substrates. Strained SHO phases were characterized using X-ray diffraction, X-ray absorption spectroscopy, and scanning transmission electron microscopy to determine the space group of the strained films, with the results compared to those of DFT-optimized models of phase stability versus strain. Contrary to past reports, we find that compressively strained SrHfO3 undergoes octahedral tilt distortions without associated ferroelectric polarization and most likely takes on the I4/mcm phase with the a0a0c– tilt pattern.more » « lessFree, publicly-accessible full text available February 11, 2026
-
Abstract High‐efficiency and low‐cost catalysts for oxygen evolution reaction (OER) are critical for electrochemical water splitting to generate hydrogen, which is a clean fuel for sustainable energy conversion and storage. Among the emerging OER catalysts, transition metal dichalcogenides have exhibited superior activity compared to commercial standards such as RuO2, but inferior stability due to uncontrolled restructuring with OER. In this study, we create bimetallic sulfide catalysts by adapting the atomic ratio of Ni and Co in CoxNi1‐xSyelectrocatalysts to investigate the intricate restructuring processes. Surface‐sensitive X‐ray photoelectron spectroscopy and bulk‐sensitive X‐ray absorption spectroscopy confirmed the favorable restructuring of transition metal sulfide material following OER processes. Our results indicate that a small amount of Ni substitution can reshape the Co local electronic structure, which regulates the restructuring process to optimize the balance between OER activity and stability. This work represents a significant advancement in the development of efficient and noble metal‐free OER electrocatalysts through a doping‐regulated restructuring approach.more » « lessFree, publicly-accessible full text available June 7, 2025
-
Water electrolysis can use renewable electricity to produce green hydrogen, a portable fuel and sustainable chemical precursor. Improving electrolyzer efficiency hinges on the activity of the oxygen evolution reaction (OER) catalyst. Earth-abundant, ABO3-type perovskite oxides offer great compositional, structural, and electronic tunability, with previous studies showing compositional substitution can increase the OER activity drastically. However, the relationship between the tailored bulk composition and that of the surface, where OER occurs, remains unclear. Here, we study the effects of electrochemical cycling on the OER activity of La 0.5 Sr 0.5 Ni 1-x Fe x O 3-δ (x = 0-0.5) epitaxial films grown by oxide molecular beam epitaxy as a model Sr-containing perovskite oxide. Electrochemical testing and surface-sensitive spectroscopic analyses show Ni segregation, which is affected by electrochemical history, along with surface amorphization, coupled with changes in OER activity. Our findings highlight the importance of surface composition and electrochemical cycling conditions in understanding OER performance on mixed metal oxide catalysts, suggesting common motifs of the active surface with high surface area systems.more » « less
-
null (Ed.)Due to its high theoretical energy density and relative abundancy of active materials, the magnesium–sulfur battery has attracted research attention in recent years. A closely related system, the lithium-sulfur battery, can suffer from serious self-discharge behavior. Until now, the self-discharge of Mg–S has been rarely addressed. Herein, we demonstrate for a wide variety of Mg–S electrolytes and conditions that Mg–S batteries also suffer from serious self-discharge. For a common Mg–S electrolyte, we identify a multi-step self-discharge pathway. Covalent S 8 diffuses to the metal Mg anode and is converted to ionic Mg polysulfide in a non-faradaic reaction. Mg polysulfides in solution are found to be meta-stable, continuing to react and precipitate as solid magnesium polysulfide species during both storage and active use. Mg–S electrolytes from the early, middle, and state-of-the-art stages of the Mg–S literature are all found to enable the self-discharge. The self-discharge behavior is found to decrease first cycle discharge capacity by at least 32%, and in some cases up to 96%, indicating this is a phenomenon of the Mg–S chemistry that deserves focused attention.more » « less
-
Doping-modulated strain control of bifunctional electrocatalysis for rechargeable zinc–air batteriesnull (Ed.)Changes in the local atomic arrangement in a crystal caused by lattice-mismatch-induced strain can efficiently regulate the performance of electrocatalysts for zinc–air batteries (ZABs) in many manners, mainly due to modulated electronic structure configurations that affect the adsorption energies for oxygen-intermediates formed during oxygen reduction and evolution reactions (ORR and OER). However, the application of strain engineering in electrocatalysis has been limited by the strain relaxation caused by structural instability such as dissolution and destruction, leading to insufficient durability towards the ORR/OER. Herein, we propose a doping strategy to modulate the phase transition and formation of self-supported cobalt fluoride–sulfide (CoFS) nanoporous films using a low amount of copper (Cu) as a dopant. This well-defined Cu–CoFS heterostructure overcomes the obstacle of structural instability. Our study of the proposed Cu–CoFS also helps establish the structure–property relationship of strained electrocatalysts by unraveling the role of local strain in regulating the electronic structure of the catalyst. As a proof-of-concept, the Cu–CoFS electrocatalyst with doping-modulated strain exhibited superior onset potentials of 0.91 V and 1.49 V for the ORR and OER, respectively, surpassing commercial Pt/C@RuO 2 and benchmarking non-platinum group metal (non-PGM) catalysts. ZABs with the Cu–CoFS catalyst delivered excellent charge/discharge cycling performance with an extremely low voltage gap of 0.5 V at a current density of 10 mA cm −2 and successively 0.93 V at a high current density of 100 mA cm −2 and afforded an outstanding peak power density of 255 mW cm −2 .more » « less
-
Recently, considerable attention has been paid to the stabilization of atomic platinum (Pt) catalysts on desirable supports in order to reduce Pt consumption, improve the catalyst stability, and thereafter enhance the catalyst performance in renewable energy devices such as fuel cells and zinc-air batteries (ZABs). Herein, we rationally designed a novel strategy to stabilize atomic Pt catalysts in alloyed platinum cobalt (PtCo) nanosheets with trapped interstitial fluorine (SA-PtCoF) for ZABs. The trapped interstitial F atoms in the PtCoF matrix induce lattice distortion resulting in weakening of the Pt–Co bond, which is the driving force to form atomic Pt. As a result, the onset potentials of SA-PtCoF are 0.95 V and 1.50 V for the oxygen reduction and evolution reactions (ORR and OER), respectively, superior to commercial Pt/C@RuO 2 . When used in ZABs, the designed SA-PtCoF can afford a peak power density of 125 mW cm −2 with a specific capacity of 808 mA h g Zn −1 and excellent cyclability over 240 h, surpassing the state-of-the-art catalysts.more » « less