Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The remarkable complexity of a topologically ordered many-body quantum system is encoded in the characteristics of its anyons. Quintessential predictions emanating from this complexity employ the Fibonacci string net condensate (Fib SNC) and its anyons: sampling Fib-SNC would estimate chromatic polynomials while exchanging its anyons would implement universal quantum computation. However, physical realizations remained elusive. We introduce a scalable dynamical string net preparation (DSNP) that constructs Fib SNC and its anyons on reconfigurable graphs suitable for near-term superconducting processors. Coupling the DSNP approach with composite error-mitigation on deep circuits, we create, measure, and braids Fibonacci anyons; charge measurements show 94% accuracy, and exchanging the anyons yields the expected golden ratioϕwith 98% average accuracy. We then sample the Fib SNC to estimate chromatic polynomial atϕ + 2 for several graphs. Our results establish the proof of principle for using Fib-SNC and its anyons for fault-tolerant universal quantum computation and aim at a classically hard problem.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Free, publicly-accessible full text available August 11, 2026
-
Abstract Transitions between distinct obstructed atomic insulators (OAIs) protected by crystalline symmetries, where electrons form molecular orbitals centering away from the atom positions, must go through an intermediate metallic phase. In this work, we find that the intermediate metals will become a scale-invariant critical metal phase (CMP) under certain types of quenched disorder that respect the magnetic crystalline symmetries on average. We explicitly construct models respecting averageC2zT, m, andC4zTand show their scale-invariance under chemical potential disorder by the finite-size scaling method. Conventional theories, such as weak anti-localization and topological phase transition, cannot explain the underlying mechanism. A quantitative mapping between lattice and network models shows that the CMP can be understood through a semi-classical percolation problem. Ultimately, we systematically classify all the OAI transitions protected by (magnetic) groups$$Pm,P{2}^{{\prime} },P{4}^{{\prime} }$$ , and$$P{6}^{{\prime} }$$ with and without spin-orbit coupling, most of which can support CMP.more » « less
An official website of the United States government
