skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Stern, Robert J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Approximately two-thirds of Earth’s outermost shell is composed of oceanic plates that form at spreading ridges and recycle back to Earth’s interior in subduction zones. A series of physical and chemical changes occur in the subducting lithospheric slab as the temperature and pressure increase with depth. In particular, olivine, the most abundant mineral in the upper mantle, progressively transforms to its high-pressure polymorphs near the mantle transition zone, which is bounded by the 410 km and 660 km discontinuities. However, whether olivine still exists in the core of slabs once they penetrate the 660 km discontinuity remains debated. Based on SKS and SKKS shear-wave differential splitting times, we report new evidence that reveals the presence of metastable olivine in the uppermost lower mantle within the ancient Farallon plate beneath the eastern United States. We estimate that the low-density olivine layer in the subducted Farallon slab may compensate the high density of the rest of the slab associated with the low temperature, leading to neutral buoyancy and preventing further sinking of the slab into the deeper part of the lower mantle. 
    more » « less
  2. Abstract

    Laboratory experiments and geodynamic simulations demonstrate that poloidal- and toroidal-mode mantle flows develop around subduction zones. Here, we use a new 3-D azimuthal anisotropy model constructed by full waveform inversion, to infer deep subduction-induced mantle flows underneath Middle America. At depths shallower than 150 km, poloidal-mode flow is perpendicular to the trajectory of the Middle American Trench. From 300 to 450 km depth, return flows surround the edges of the Rivera and Atlantic slabs, while escape flows are inferred through slab windows beneath Panama and central Mexico. Furthermore, at 700 km depth, the study region is dominated by the Farallon anomaly, with fast axes perpendicular to its strike, suggesting the development of lattice-preferred orientations by substantial stress. These observations provide depth-dependent seismic anisotropy for future mantle flow simulations, and call for further investigations about the deformation mechanisms and elasticity of minerals in the transition zone and uppermost lower mantle.

     
    more » « less
  3. Abstract

    Several hypotheses have been proposed to explain intriguing circular shear wave splitting patterns in the Pacific Northwest, invoking either 2‐D entrained flows or 3‐D return flows. Here, we present some hitherto unidentified, depth‐dependent anisotropic signatures to reconcile different conceptual models. At depths shallower than 200 km, the fast propagation directions of seismic waves to the west of the Rocky Mountain are aligned sub‐parallel to the subduction direction of the Juan de Fuca and Gorda Plates. This pattern is consistent with previous onshore/offshore shear wave splitting measurements and indicates that 2‐D entrained flows dominate at shallower depths. From 300 to 500 km, two large‐scale return flows are revealed, one circulating around Nevada and Colorado and the other running around the edge of the descending Juan de Fuca slab. These observations suggest the development of toroidal‐mode mantle flows, driven by the fast rollback of the narrow, fragmented Juan de Fuca and Gorda slabs.

     
    more » « less