Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Understanding how biodiversity affects pathogen transmission remains an unresolved question due to the challenges in testing potential mechanisms in natural systems and how these mechanisms vary across biological scales. By quantifying transmission of an entire guild of parasites (larval trematodes) within 902 amphibian host communities, we show that the community-level drivers of infection depend critically on biological scale. At the individual host scale, increases in host richness led to fewer parasites per host for all parasite taxa, with no effect of host or predator densities. At the host community scale, however, the inhibitory effects of richness were counteracted by associated increases in total host density, leading to no overall change in parasite densities. Mechanistically, we find that while average host competence declined with increasing host richness, total community competence remained stable due to additive assembly patterns. These results help reconcile disease-diversity debates by empirically disentangling the roles of alternative ecological drivers of parasite transmission and how such effects depend on biological scale.more » « less
-
Abstract While vertebrate immune systems are appreciated for their complexity and adaptability, invertebrate immunity is often considered to be less complex. However, immune responses in many invertebrates likely involve sophisticated processes. Interactions between the crustacean hostDaphnia dentiferaand its fungal pathogenMetschnikowia bicuspidataprovide an excellent model for exploring the mechanisms underlying crustacean immunity. To explore the genomic basis of immunity inDaphnia, we used RNA‐sequencing technology to quantify differential gene expression between individuals of a single host genotype exposed or unexposed toM. bicuspidataover 24 h. Transcriptomic analyses showed that the number of differentially expressed genes between the control (unexposed) and experimental (exposed) groups increased over time. Gene ontology enrichment analysis revealed that differentially expressed genes were enriched for immune‐related molecules and processes, such as cuticle development, prostaglandin, and defense response processes. Our findings provide a suite of immunologically relevant genes and suggest the presence of a rapidly upregulated immune response involving the cuticle inDaphnia. Studies involving gene expression responses to pathogen exposure shine a light on the processes occurring during the course of infection. By leveraging knowledge on the genetic basis for immunity, immune mechanisms can be more thoroughly understood to refine our understanding of disease spread within invertebrate populations.more » « less
-
null (Ed.)Abstract Biodiversity loss may increase the risk of infectious disease in a phenomenon known as the dilution effect. Circumstances that increase the likelihood of disease dilution are: (i) when hosts vary in their competence, and (ii) when communities disassemble predictably, such that the least competent hosts are the most likely to go extinct. Despite the central role of competence in diversity–disease theory, we lack a clear understanding of the factors underlying competence, as well as the drivers and extent of its variation. Our perspective piece encourages a mechanistic understanding of competence and a deeper consideration of its role in diversity–disease relationships. We outline current evidence, emerging questions and future directions regarding the basis of competence, its definition and measurement, the roots of its variation and its role in the community ecology of infectious disease.more » « less
An official website of the United States government
