The Southern Ocean connects the ocean's major basins via the Antarctic Circumpolar Current (ACC), and closes the global meridional overturning circulation (MOC). Observing these transports is challenging because three‐dimensional mesoscale‐resolving measurements of currents, temperature, and salinity are required to calculate transport in density coordinates. Previous studies have proposed to circumvent these limitations by inferring subsurface transports from satellite measurements using data‐driven methods. However, it is unclear whether these approaches can identify the signatures of subsurface transport in the Southern Ocean, which exhibits an energetic mesoscale eddy field superposed on a highly heterogeneous mean stratification and circulation. This study employs Deep Learning techniques to link the transports of the ACC and the upper and lower branches of the MOC to sea surface height (SSH) and ocean bottom pressure (OBP), using an idealized channel model of the Southern Ocean as a test bed. A key result is that a convolutional neural network produces skillful predictions of the ACC transport and MOC strength (skill score of 0.74 and 0.44, respectively). The skill of these predictions is similar across timescales ranging from daily to decadal but decreases substantially if SSH or OBP is omitted as a predictor. Using a fully connected or linear neural network yields similarly accurate predictions of the ACC transport but substantially less skillful predictions of the MOC strength. Our results suggest that Deep Learning offers a route to linking the Southern Ocean's zonal transport and overturning circulation to remote measurements, even in the presence of pronounced mesoscale variability.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Eastern boundary upwelling systems (EBUSs) host equatorward wind-driven near-surface currents overlying poleward subsurface undercurrents. Various previous theories for these undercurrents have emphasized the role of poleward alongshore pressure gradient forces (APFs). Energetic mesoscale variability may also serve to accelerate undercurrents via mesoscale stirring of the potential vorticity gradient imposed by the continental slope. However, it remains unclear whether this eddy rectification mechanism contributes substantially to driving poleward undercurrents in EBUS. This study isolates the influence of eddy rectification on undercurrents via a suite of idealized simulations forced either by alongshore winds, with or without an APF, or by randomly generated mesoscale eddies. It is found that the simulations develop undercurrents with strengths comparable to those found in nature in both wind-forced and randomly forced experiments. Analysis of the momentum budget reveals that the along-isobath undercurrent flow is accelerated by isopycnal advective eddy momentum fluxes and the APF and retarded by frictional drag. The undercurrent acceleration may manifest as eddy momentum fluxes or as topographic form stress depending on the coordinate system used to compute the momentum budget, which reconciles these findings with previous work that linked eddy acceleration of the undercurrent to topographic form stress. The leading-order momentum balance motivates a scaling for the strength of the undercurrent that explains most of the variance across the simulations. These findings indicate that eddy rectification is of comparable importance to the APF in driving poleward undercurrents in EBUSs and motivate further work to diagnose this effect in high-resolution models and observations and to parameterize it in coarse-resolution ocean/climate models.
-
Abstract Interaction between the atmosphere and ocean in sea ice–covered regions is largely concentrated in leads, which are long, narrow openings between sea ice floes. Refreezing and brine rejection in these leads inject salt that plays a key role in maintaining the polar halocline. The injected salt forms dense plumes that subsequently become baroclinically unstable, producing submesoscale eddies that facilitate horizontal spreading of the salt anomalies. However, it remains unclear which properties of the stratification and leads most strongly influence the vertical and horizontal spreading of lead-input salt anomalies. In this study, the spread of lead-injected buoyancy anomalies by mixed layer and eddy processes are investigated using a suite of idealized numerical simulations. The simulations are complemented by dynamical theories that predict the plume convection depth, horizontal eddy transfer coefficient, and eddy kinetic energy as functions of the ambient stratification and lead properties. It is shown that vertical penetration of buoyancy anomalies is accurately predicted by a mixed layer temperature and salinity budget until the onset of baroclinic instability (~3 days). Subsequently, these buoyancy anomalies are spread horizontally by eddies. The horizontal eddy diffusivity is accurately predicted by a mixing-length scaling, with a velocity scale set by the potential energy released by the sinking salt plume and a length scale set by the deformation radius of the ambient stratification. These findings indicate that the intermittent opening of leads can efficiently populate the polar halocline with submesoscale coherent vortices with diameters of ~10 km, and they provide a step toward parameterizing their effect on the horizontal redistribution of salinity anomalies.
-
Abstract Previous studies have concluded that the wind-input vorticity in ocean gyres is balanced by bottom pressure torques (BPT), when integrated over latitude bands. However, the BPT must vanish when integrated over any area enclosed by an isobath. This constraint raises ambiguities regarding the regions over which BPT should close the vorticity budget, and implies that BPT generated to balance a local wind stress curl necessitates the generation of a compensating, nonlocal BPT and thus nonlocal circulation. This study aims to clarify the role of BPT in wind-driven gyres using an idealized isopycnal model. Experiments performed with a single-signed wind stress curl in an enclosed, sloped basin reveal that BPT balances the winds
only when integrated over latitude bands. Integrating over other, dynamically motivated definitions of the gyre, such as barotropic streamlines, yields a balance between wind stress curl and bottom frictional torques. This implies that bottom friction plays a nonnegligible role in structuring the gyre circulation. Nonlocal bottom pressure torques manifest in the form of along-slope pressure gradients associated with a weak basin-scale circulation, and are associated with a transition to a balance between wind stress and bottom friction around the coasts. Finally, a suite of perturbation experiments is used to investigate the dynamics of BPT. To predict the BPT, the authors extend a previous theory that describes propagation of surface pressure signals from the gyre interior toward the coast along planetary potential vorticity contours. This theory is shown to agree closely with the diagnosed contributions to the vorticity budget across the suite of model experiments.