skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stites, Sam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There are many different probabilistic programming languages that are specialized to specific kinds of probabilistic programs. From a usability and scalability perspective, this is undesirable: today, probabilistic programmers are forced up-front to decide which language they want to use and cannot mix-and-match different languages for handling heterogeneous programs. To rectify this, we seek a foundation for sound interoperability for probabilistic programming languages: just as today’s Python programmers can resort to low-level C programming for performance, we argue that probabilistic programmers should be able to freely mix different languages for meeting the demands of heterogeneous probabilistic programming environments. As a first step towards this goal, we introduce MultiPPL, a probabilistic multi-language that enables programmers to interoperate between two different probabilistic programming languages: one that leverages a high-performance exact discrete inference strategy, and one that uses approximate importance sampling. We give a syntax and semantics for MultiPPL, prove soundness of its inference algorithm, and provide empirical evidence that it enables programmers to perform inference on complex heterogeneous probabilistic programs and flexibly exploits the strengths and weaknesses of two languages simultaneously. 
    more » « less