Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Living in a rapidly changing environment can alter stress physiology at the population level, with negative impacts on health, reproductive rates, and mortality that may ultimately result in species decline. Small, isolated animal populations where genetic diversity is low are at particular risks, such as endangered Virunga mountain gorillas (Gorilla beringei beringei). Along with climate change‐associated environmental shifts that are affecting the entire population, subpopulations of the Virunga gorillas have recently experienced extreme changes in their social environment. As the growing population moves closer to the forest's carrying capacity, the gorillas are coping with rising population density, increased frequencies of interactions between social units, and changing habitat use (e.g., more overlapping home ranges and routine ranging at higher elevations). Using noninvasive monitoring of fecal glucocorticoid metabolites (FGM) on 115 habituated Virunga gorillas, we investigated how social and ecological variation are related to baseline FGM levels, to better understand the adaptive capacity of mountain gorillas and monitor potential physiological indicators of population decline risks. Generalized linear mixed models revealed elevated mean monthly baseline FGM levels in months with higher rainfall and higher mean maximum and minimum temperature, suggesting that Virunga gorillas might be sensitive to predicted warming and rainfall trends involving longer, warmer dry seasons and more concentrated and extreme rainfall occurrences. Exclusive use of smaller home range areas was linked to elevated baseline FGM levels, which may reflect reduced feeding efficiency and increased travel efforts to actively avoid neighboring groups. The potential for additive effects of stress‐inducing factors could have short‐ and long‐term impacts on the reproduction, health, and ultimately survival of the Virunga gorilla population. The ongoing effects of environmental changes and population dynamics must be closely monitored and used to develop effective long‐term conservation strategies that can help address these risk factors.more » « less
-
Abstract ObjectivesGorillas, along with chimpanzees and bonobos, are ubiquitously described as ‘knuckle‐walkers.’ Consequently, knuckle‐walking (KW) has been featured pre‐eminently in hypotheses of the pre‐bipedal locomotor behavior of hominins and in the evolution of locomotor behavior in apes. However, anecdotal and behavioral accounts suggest that mountain gorillas may utilize a more complex repertoire of hand postures, which could alter current interpretations of African ape locomotion and its role in the emergence of human bipedalism. Here we documented hand postures during terrestrial locomotion in wild mountain gorillas to investigate the frequency with which KW and other hand postures are utilized in the wild. Materials and methodsMultiple high‐speed cameras were used to record bouts of terrestrial locomotion of 77 habituated mountain gorillas at Bwindi Impenetrable National Park (Uganda) and Volcanoes National Park (Rwanda). ResultsWe captured high‐speed video of hand contacts in 8% of the world's population of mountain gorillas. Our results reveal that nearly 40% of these gorillas used “non‐KW” hand postures, and these hand postures constituted 15% of all hand contacts. Some of these “non‐KW” hand postures have never been documented in gorillas, yet match hand postures previously identified in orangutans. DiscussionThese results highlight a previously unrecognized level of hand postural diversity in gorillas, and perhaps great apes generally. Although present at lower frequencies than KW, we suggest that the possession of multiple, versatile hand postures present in wild mountain gorillas may represent a shared feature of the African ape and human clade (or even great ape clade) rather than KWper se.more » « less
-
The robust masticatory system of mountain gorillas is thought to have evolved for the comminution of tough vegetation, yet, compared to other primates, the toughness of the mountain gorilla diet is unremarkable. This may be a result of low plant toughness in the mountain gorilla environment or of mountain gorillas feeding selectively on low‐toughness foods. The goal of this paper is to determine how the toughness of the mountain gorilla diet varies across their habitat, which spans a large altitudinal range, and whether there is a relationship between toughness and food selection by mountain gorillas. We collected data on the following variables to determine whether, and if so how, they change with altitude: leaf toughness of two plant species consumed by mountain gorillas, at every 100 m increase in altitude (2,600–3,700 m); toughness of consumed foods comprising over 85% of the gorilla diet across five vegetation zones; and toughness of unconsumed/infrequently consumed plant parts of those foods. Although leaf toughness increased with altitude, the toughness of the gorilla diet remained similar. There was a negative relationship between toughness and consumption frequency, and toughness was a better predictor of consumption frequency than plant frequency, biomass, and density. Consumed plant parts were less tough than unconsumed/infrequently consumed parts and toughness of the latter increased with altitude. Although it is unclear whether gorillas select food based on toughness or use toughness as a sensory cue to impart other plant properties (e.g., macronutrients, chemicals), our results that gorillas maintain a consistent low‐toughness dietary profile across altitude, despite toughness increasing with altitude, suggest that the robust gorilla masticatory apparatus evolved for repetitive mastication of foods that are not high in toughness.more » « less
An official website of the United States government
