skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stovall, Atticus E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Phenology is a distinct marker of the impacts of climate change on ecosystems. Accordingly, monitoring the spatiotemporal patterns of vegetation phenology is important to understand the changing Earth system. A wide range of sensors have been used to monitor vegetation phenology, including digital cameras with different viewing geometries mounted on various types of platforms. Sensor perspective, view-angle, and resolution can potentially impact estimates of phenology. We compared three different methods of remotely sensing vegetation phenology—an unoccupied aerial vehicle (UAV)-based, downward-facing RGB camera, a below-canopy, upward-facing hemispherical camera with blue (B), green (G), and near-infrared (NIR) bands, and a tower-based RGB PhenoCam, positioned at an oblique angle to the canopy—to estimate spring phenological transition towards canopy closure in a mixed-species temperate forest in central Virginia, USA. Our study had two objectives: (1) to compare the above- and below-canopy inference of canopy greenness (using green chromatic coordinate and normalized difference vegetation index) and canopy structural attributes (leaf area and gap fraction) by matching below-canopy hemispherical photos with high spatial resolution (0.03 m) UAV imagery, to find the appropriate spatial coverage and resolution for comparison; (2) to compare how UAV, ground-based, and tower-based imagery performed in estimating the timing of the spring phenological transition. We found that a spatial buffer of 20 m radius for UAV imagery is most closely comparable to below-canopy imagery in this system. Sensors and platforms agree within +/− 5 days of when canopy greenness stabilizes from the spring phenophase into the growing season. We show that pairing UAV imagery with tower-based observation platforms and plot-based observations for phenological studies (e.g., long-term monitoring, existing research networks, and permanent plots) has the potential to scale plot-based forest structural measures via UAV imagery, constrain uncertainty estimates around phenophases, and more robustly assess site heterogeneity. 
    more » « less
  2. null (Ed.)
  3. Abstract Vegetation structural complexity and biodiversity tend to be positively correlated, but understanding of this relationship is limited in part by structural metrics tending to quantify only horizontal or vertical variation, and that do not reflect internal structure. We developed new metrics for quantifying internal vegetation structural complexity using terrestrial LiDAR scanning and applied them to 12 NEON forest plots across an elevational gradient in Great Smoky Mountains National Park, USA. We asked (1) How do our newly developed structure metrics compare to traditional metrics? (2) How does forest structure vary with elevation in a high‐biodiversity, high topographic complexity region? (3) How do forest structural metrics vary in the strength of their relationships with vascular plant biodiversity? Our new measures of canopy density (Depth) and structural complexity (σDepth), and their canopy height‐normalized counterparts, were sensitive to structural variations and effectively summarized horizontal and vertical dimensions of structural complexity. Forest structure varied widely across plots spanning the elevational range of GRSM, with taller, more structurally complex forests at lower elevation. Vascular plant biodiversity was negatively correlated with elevation and more strongly positively correlated with vegetation structure variables. The strong correlations we observed between canopy structural complexity and biodiversity suggest that structural complexity metrics could be used to assay plant biodiversity over large areas in concert with airborne and spaceborne platforms. 
    more » « less
  4. Summary Leaf angle distribution (LAD) in forest canopies affects estimates of leaf area, light interception, and global‐scale photosynthesis, but is often simplified to a single theoretical value. Here, we present TLSLeAF (Terrestrial Laser Scanning Leaf Angle Function), an automated open‐source method of deriving LADs from terrestrial laser scanning.TLSLeAF produces canopy‐scale leaf angle and LADs by relying on gridded laser scanning data. The approach increases processing speed, improves angle estimates, and requires minimal user input. Key features are automation, leaf–wood classification, beta parameter output, and implementation in R to increase accessibility for the ecology community.TLSLeAF precisely estimates leaf angle with minimal distance effects on angular estimates while rapidly producing LADs on a consumer‐grade machine. We challenge the popular spherical LAD assumption, showing sensitivity to ecosystem type in plant area index and foliage profile estimates that translate toc. 25% andc. 11% increases in canopy net photosynthesis (c. 25%) and solar‐induced chlorophyll fluorescence (c. 11%).TLSLeAF can now be applied to the vast catalog of laser scanning data already available from ecosystems around the globe. The ease of use will enable widespread adoption of the method outside of remote‐sensing experts, allowing greater accessibility for addressing ecological hypotheses and large‐scale ecosystem modeling efforts. 
    more » « less