skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Stowell, H.H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zircon U-Pb, and garnet Sm-Nd and Lu-Hf dates provide important constraints on local and orogenic scale processes in lower-crustal rocks. However, in high-temperature metamorphic rocks these isotopic systems typically yield significant ranges reflecting both igneous and metamorphic processes. Therefore, linking dates to specific aspects of rock history can be problematic. In Fiordland, New Zealand, granulite-facies orthogneiss is cut by leucosomes that are bordered by garnet clinopyroxene reaction zones (garnet reaction zones). In both host orthogneiss and garnet reaction zones, zircon are typically anhedral with U-Pb dates ranging from 118.30 ± 0.13 to 115.70 ± 0.18 Ma (CA-ID-TIMS) and 121.4 ± 2.0 to 109.8 ± 1.8 Ma (SHRIMP-RG). Zircon dates in host and garnet reaction zone do not define distinct populations. In addition, the dates cannot be readily grouped based on external morphology or internal CL zoning. Zircon trace-element concentrations indicate two distinct crystallization trends, clearly seen in Th and U. Garnet occurs in selvages to the leucosome veins and in the adjacent garnet reaction zones. In selvages and host orthogneiss, garnet is generally 0.5 to 1 cm diameter and euhedral and is 0.1 to 0.5 cm diameter and subhedral in garnet reaction zones. Garnet Sm-Nd and Lu-Hf dates range from ca. 115 to 101 Ma (including uncertainties) and correlate with grain size. We interpret the CA-ID-TIMS zircon dates to record the age of magma emplacement and the SHRIMP-RG dates to record a range from igneous crystallization to metamorphic dissolution and reprecipitation and/or local Pb loss. Zircon compositional trends within the garnet reaction zone and host are compatible with locally isolated melt and/or separate intrusive magma batches for the two samples described here. Dates for the largest, ~1 cm, garnet of ~113 Ma record growth during metamorphism, while the smaller grains with younger dates reflect high-temperature intracrystalline diffusion and isotopic closure during cooling. The comprehensive geochronological data set for a single location in the Malaspina Pluton illustrates a complex and protracted geologic history common in granulite facies rocks, estimates lower crustal cooling rates of ~20 °C/m.y., and underlines the importance of multiple chronometers and careful textural characterization for assigning meaningful ages to lower-crustal rocks. Numerous data sets from single locations, like the one described here, are needed to evaluate the spatial extent and variation of cooling rates for Fiordland and other lower crustal exposures. 
    more » « less
  2. Structural analyses combined with new U-Pb zircon and titanite geochronology show how two Early Cretaceous transpressional shear zones initiated and grew through a nearly complete section of continental arc crust during oblique convergence. Both shear zones reactivated Carboniferous faults that penetrated the upper mantle below Zealandia's Median Batholith but show opposite growth patterns and dissimilar relationships with respect to arc magmatism. The Grebe-Indecision Creek shear zone was magma-starved and first reactivated at ∼136 Ma as an oblique-reverse fault, along which an outboard batholith partially subducted beneath Gondwana. This system nucleated at or above ∼20 km depth and propagated downward at 2–3 mm yr−1, accumulating at least 35–45 km of horizontal (arc-normal) shortening by ∼124 Ma. In contrast, the magma-rich George Sound shear zone first reactivated in the lower crust (∼55 km depth) at ∼124 Ma and grew upward at ∼3 mm yr−1, reaching the upper crust by ∼110 Ma. In this latter system, magmatism influenced shear zone architecture and drove its growth while subduction and oblique convergence ended. As magma entered the roots of the system and began to solidify, deformation was driven out of the lower crust and into the middle crust where the system widened by a factor of three when fold-thrust belts formed on either side of a steep, central transpressional shear zone. This study illustrates how the reactivation of structural weaknesses localizes deformation at all depths in the lithosphere and shows how magma-deformation feedbacks influence shear zone connectivity and built a batholith from the bottom up. 
    more » « less
  3. Interpretation of geochronological and petrological data from partially-melted granulite is challenging. However, integration of multiple chronometers and mineral assemblage diagrams (MAD) can be used to estimate the nature and duration of processes. Excellent lower-crustal exposures of garnet granulite from the Malaspina Pluton, Fiordland New Zealand provide an ideal place to employ this kitchen sink approach. We use zircon U-Pb ages from LA-ICPMS, SHRIMP-RG, and CA-TIMS, garnet Lu-Hf and Sm-Nd ages, and MAD in order to evaluate local partial melting vs. melt injection, equilibrium volumes, P-T conditions, and the duration of lower crustal thermal events. Host diorite (H), garnet-clinopyroxene reaction zones (GRZ), coarse garnet selvages, and tonalite veins provide a record of intrusion and granulite facies partial melting. Zircon U-Pb ages range from 123 to 107 Ma (all); LA-ICPMS ages contain the entire range; CA-TIMS ages range from 118.30±0.13 to 115.7±0.18 Ma; and SHRIMP-RG ages range from 121.4±2 to 109.8±1.8 Ma. The latter two techniques are interpreted to indicate primary igneous crystallization from ~119 to ~116 Ma and the youngest ~110 Ma ages are interpreted as metamorphic zircon growth. Garnet ages for ~1 cm grains are ~113 Ma (Lu-Hf & Sm-Nd) and record metamorphic growth, and <0.3 mm grains with Sm-Nd ages from 113 to 104 Ma reflect high temperature intracrystalline diffusion and isotopic closure during cooling to amphibolite facies. Zircon trace-element compositions indicate 2 distinct crystallization trends reflecting evolution of primary magma batches. MAD indicate that garnet was not in equilibrium with sampled rock compositions. Instead, garnet shows apparent equilibrium with a modeled mixture of the GRZ and the H and grew in equilibrium with an effective bulk composition that shifted toward the leucosome. This would produce the observed increase in garnet grossular content. We conclude that: Malaspina rocks from Crooked Arm preserve evidence for 2 igneous layers which evolved as discrete magmas, igneous crystallization lasted 2 to 3 m.y., granulite metamorphism peaked ~ 3 m.y. after intrusion, metamorphism lasted ≥3 m.y., cooling occurred at ~20°C/m.y., and granulite minerals equilibrated with a mixture of solid phases and melt at ~14 kbar and 920°C (based on garnet compositions and MAD). 
    more » « less