skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stowers, Ryan S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Structural and mechanical cues from the extracellular matrix (ECM) regulate tissue morphogenesis. Tissue development has conventionally been studied withex vivosystems where mechanical properties of the extracellular environment are either poorly controlled in space and time, lack tunability, or do not mimic ECM mechanics. For these reasons, it remains unknown how matrix stress relaxation rate, a time-dependent mechanical property that influences several cellular processes, regulates mammary branching morphogenesis. Here, we systematically investigated the influence of matrix stress relaxation on mammary branching morphogenesis using 3D alginate-collagen matrices and spheroids of human mammary epithelial cells. Slow stress relaxing matrices promoted significantly greater branch formation compared to fast stress relaxing matrices. Branching in slow stress relaxing matrices was accompanied by local collagen fiber alignment, while collagen fibers remained randomly oriented in fast stress relaxing matrices. In slow stress relaxing matrices, branch formation was driven by intermittent pulling contractions applied to the local ECM at the tips of elongating branches, which was accompanied by an abundance of phosphorylated focal adhesion kinase (phospho-FAK) and β1 integrin at the tips of branches. On the contrary, we observed that growing spheroids in fast stress relaxing matrices applied isotropic pushing forces to the ECM. Pharmacological inhibition of both Rac1 and non-muscle myosin II prevented epithelial branch formation, regardless of matrix stress relaxation rate. Interestingly, restricting cellular expansion via increased osmotic pressure was sufficient to impede epithelial branching in slow stress relaxing matrices. This work highlights the importance of stress relaxation in regulating and directing mammary branch elongation. 
    more » « less
    Free, publicly-accessible full text available May 20, 2026
  2. Abstract Reconstituted basement membrane (rBM) products like Matrigel are widely used in 3D culture models of epithelial tissues and cancer. However, their utility is hindered by key limitations, including batch variability, xenogenic contaminants, and a lack of tunability. To address these challenges, we engineered a 3D basement membrane (eBM) matrix by conjugating defined extracellular matrix (ECM) adhesion peptides (IKVAV, YIGSR, RGD) to an alginate hydrogel network with precisely tunable stiffness and viscoelasticity. We optimized the mechanical and biochemical properties of the engineered basement membranes (eBMs) to support mammary acinar morphogenesis in MCF10A cells, similar to rBM. We found that IKVAV-modified, fast-relaxing (τ1/2= 30-150 s), and soft (E = 200 Pa) eBMs best promoted polarized acinar structures. Clusters became invasive and lost polarity only when the IKVAV-modified eBM exhibited both similar stiffness to a malignant breast tumor (E = 4000 Pa) and slow stress relaxation (τ1/2= 600-1100 s). Notably, tumor-like stiffness alone was not sufficient to drive invasion in fast stress relaxing matrices modified with IKVAV. In contrast, RGD-modified matrices promoted a malignant phenotype regardless of mechanical properties. We also utilized this system to interrogate the mechanism driving acinar and tumorigenic phenotypes in response to microenvironmental parameters. A balance in activity between β1- and β4-integrins was observed in the context of IKVAV-modified eBMs, prompting further investigation into the downstream mechanisms. We found differences in hemidesmosome formation and production of endogenous laminin in response to peptide type, stress relaxation, and stiffness. We also saw that inhibiting either focal adhesion kinase or hemidesmosome signaling in IKVAV eBMs prevented acinus formation. This eBM matrix is a powerful, reductionist, xenogenic-free system, offering a robust platform for both fundamental research and translational applications in tissue engineering and disease modeling. 
    more » « less
    Free, publicly-accessible full text available March 3, 2026
  3. Abstract Breast cancer progression is marked by extracellular matrix (ECM) remodeling, including increased stiffness, faster stress relaxation, and elevated collagen levels. In vitro experiments have revealed a role for each of these factors to individually promote malignant behavior, but their combined effects remain unclear. To address this, we developed alginate-collagen hydrogels with independently tunable stiffness, stress relaxation, and collagen density. We show that these combined tumor-mimicking ECM cues reinforced invasive morphologies and promoted spheroid invasion in breast cancer and mammary epithelial cells. High stiffness and low collagen density in slow-relaxing matrices led to the greatest cell migration speed and displacement. RNA-seq revealed Sp1 target gene enrichment in response to both individual and combined ECM cues, with a greater enrichment observed under multiple cues. Notably, high expression of Sp1 target genes upregulated by fast stress relaxation correlated with poor patient survival. Mechanistically, we found that phosphorylated-Sp1 (T453) was increasingly located in the nucleus in stiff and/or fast relaxing matrices, which was regulated by PI3K and ERK1/2 signaling, as well as actomyosin contractility. This study emphasizes how multiple ECM cues in complex microenvironments reinforce malignant traits and supports an emerging role for Sp1 as a mechanoresponsive transcription factor. 
    more » « less
    Free, publicly-accessible full text available March 19, 2026