- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Rosenbloom, Nan (2)
-
Bailey, David (1)
-
Bartoletti, Tony (1)
-
Benedict, James (1)
-
Caron, Julie M (1)
-
Danabasoglu, Gokhan (1)
-
Fasullo, John T (1)
-
Glanville, Anne A. (1)
-
Glanville, Sasha (1)
-
Golaz, Jean-Christophe (1)
-
Holland, Marika (1)
-
Kim, Who M. (1)
-
King, Teagan (1)
-
Krumhardt, Kristen (1)
-
Li, Hui (1)
-
Lindsay, Keith (1)
-
Lombardozzi, Danica (1)
-
Long, Matthew (1)
-
Lovenduski, Nicole (1)
-
Meehl, Gerald A (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. This work assesses a recently produced 21-member climate model large ensemble (LE) based on the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) version 2 (E3SM2). The ensemble spans the historical era (1850 to 2014) and 21st century (2015 to 2100), using the SSP370 pathway, allowing for an evaluation of the model's forced response. A companion 500-year preindustrial control simulation is used to initialize the ensemble and estimate drift. Characteristics of the LE are documented and compared against other recently produced ensembles using the E3SM version 1 (E3SM1) and Community Earth System Model (CESM) versions 1 and 2. Simulation drift is found to be smaller, and model agreement with observations is higher in versions 2 of E3SM and CESM versus their version 1 counterparts. Shortcomings in E3SM2 include a lack of warming from the mid to late 20th century, likely due to excessive cooling influence of anthropogenic sulfate aerosols, an issue also evident in E3SM1. Associated impacts on the water cycle and energy budgets are also identified. Considerable model dependence in the response to both aerosols and greenhouse gases is documented and E3SM2's sensitivity to variable prescribed biomass burning emissions is demonstrated. Various E3SM2 and CESM2 model benchmarks are found to be on par with the highest-performing recent generation of climate models, establishing the E3SM2 LE as an important resource for estimating climate variability and responses, though with various caveats as discussed herein. As an illustration of the usefulness of LEs in estimating the potential influence of internal variability, the observed CERES-era trend in net top-of-atmosphere flux is compared to simulated trends and found to be much larger than the forced response in all LEs, with only a few members exhibiting trends as large as observed, thus motivating further study.more » « less
-
Yeager, Stephen G.; Rosenbloom, Nan; Glanville, Anne A.; Wu, Xian; Simpson, Isla; Li, Hui; Molina, Maria J.; Krumhardt, Kristen; Mogen, Samuel; Lindsay, Keith; et al (, Geoscientific Model Development)Abstract. The potential for multiyear prediction of impactful Earthsystem change remains relatively underexplored compared to shorter(subseasonal to seasonal) and longer (decadal) timescales. In this study, weintroduce a new initialized prediction system using the Community EarthSystem Model version 2 (CESM2) that is specifically designed to probepotential and actual prediction skill at lead times ranging from 1 month outto 2 years. The Seasonal-to-Multiyear Large Ensemble (SMYLE) consists of acollection of 2-year-long hindcast simulations, with four initializations peryear from 1970 to 2019 and an ensemble size of 20. A full suite of output isavailable for exploring near-term predictability of all Earth systemcomponents represented in CESM2. We show that SMYLE skill for ElNiño–Southern Oscillation is competitive with other prominent seasonalprediction systems, with correlations exceeding 0.5 beyond a lead time of 12months. A broad overview of prediction skill reveals varying degrees ofpotential for useful multiyear predictions of seasonal anomalies in theatmosphere, ocean, land, and sea ice. The SMYLE dataset, experimentaldesign, model, initial conditions, and associated analysis tools are allpublicly available, providing a foundation for research on multiyearprediction of environmental change by the wider community.more » « less