skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Straube, Nicolas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The rapid diversification of notothenioid fishes in Antarctic waters is a prime example of the process of adaptive radiation. Within around 10 million years, Antarctic notothenioids have diversified into over 100 species with a broad range of lifestyles and ecological adaptations. However, the exact number of species within this radiation has long been unclear. Particularly challenging is the taxonomy of the genusChannichthys, for which between one and nine species have been recognized by different authors. The putative species of this genus are known from a limited number of specimens, of which most were sampled decades ago. Here, we investigated the mitochondrial genomes of museum specimens representing the four species Unicorn Icefish (C. rhinoceratus), Red Icefish (C. rugosus), Sailfish Pike (C. velifer), and Charcoal Icefish (C. panticapaei), complemented by morphological analyses. All analyzed specimens were collected in the 1960s and 1970s and fixed in formaldehyde, and their DNA has been heavily degraded. Applying ancient-DNA protocols for DNA extraction and single-stranded library preparation, we were able to obtain sufficient endogenous DNA to reconstruct the mitochondrial genomes of one specimen per species. These mitochondrial genome sequences were nearly identical for the three specimens assigned to Unicorn Icefish, Red Icefish, and Sailfish Pike, while greater divergence was observed for the Charcoal Icefish specimens. We discuss possible explanations of the contrast between these molecular results and the recognizable morphological variation found among the four species, and recommend that at least the Charcoal Icefish be included in the list of valid notothenioid species. 
    more » « less
  2. Abstract Diet is a crucial trait of an animal’s lifestyle and ecology. The trophic level of an organism indicates its functional position within an ecosystem and holds significance for its ecology and evolution. Here, we demonstrate the use of zinc isotopes (δ 66 Zn) to geochemically assess the trophic level in diverse extant and extinct sharks, including the Neogene megatooth shark ( Otodus megalodon ) and the great white shark ( Carcharodon carcharias ). We reveal that dietary δ 66 Zn signatures are preserved in fossil shark tooth enameloid over deep geologic time and are robust recorders of each species’ trophic level. We observe significant δ 66 Zn differences among the Otodus and Carcharodon populations implying dietary shifts throughout the Neogene in both genera. Notably, Early Pliocene sympatric C. carcharias and O. megalodon appear to have occupied a similar mean trophic level, a finding that may hold clues to the extinction of the gigantic Neogene megatooth shark. 
    more » « less