skip to main content


Search for: All records

Creators/Authors contains: "Strauss, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

     We present a stochastic field line mapping model where the interplanetary magnetic field lines are described by a density distribution function satisfying a Fokker–Planck equation that is solved numerically. Due to the spiral geometry of the nominal Parker field and to the evolving nature of solar wind turbulence, the heliospheric diffusion of the magnetic field lines is both heterogeneous and anisotropic, including a radial component. The longitudinal distributions of the magnetic field lines are shown to be close to circular Gaussian distributions, although they develop a noticeable skewness. The magnetic field lines emanating from the Sun are found to differ, on average, from the spirals predicted by Parker. Although the spirals remain close to Archimedean, they are here underwound, on average. Our model predicts a spiral angle that is smaller by ∼5° than the Parker spiral angle at Earth’s orbit for the same solar wind speed ofVsw= 400 km s−1. It also predicts an angular position on the solar disk of the best magnetically connected footpoint to an observer at 1 au that is shifted westward by ∼10° with respect to the Parker’s field model. This significantly changes the angle of the most probable magnetic connection between possible sources on the Sun and observers in the inner heliosphere. The results have direct implications for the heliospheric transport of “scatter-free” electrons accelerated in the aftermath of solar eruptions.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. This white paper is on the HMCS Firefly mission concept study. Firefly focuses on the global structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the deciphering of the solar cycle, the conditions leading to the explosive activity, and the structure and dynamics of the corona as it drives the heliosphere. 
    more » « less
    Free, publicly-accessible full text available August 23, 2024
  3. Many low-threshold experiments observe sharply rising event rates of yet unknown origins below a few hundred eV, and larger than expected from known backgrounds. Due to the significant impact of this excess on the dark matter or neutrino sensitivity of these experiments, a collective effort has been started to share the knowledge about the individual observations. For this, the EXCESS Workshop was initiated. In its first iteration in June 2021, ten rare event search collaborations contributed to this initiative via talks and discussions. The contributing collaborations were CONNIE, CRESST, DAMIC, EDELWEISS, MINER, NEWS-G, NUCLEUS, RICOCHET, SENSEI and SuperCDMS. They presented data about their observed energy spectra and known backgrounds together with details about the respective measurements. In this paper, we summarize the presented information and give a comprehensive overview of the similarities and differences between the distinct measurements. The provided data is furthermore publicly available on the workshop's data repository together with a plotting tool for visualization. 
    more » « less