Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
While interpretability methods identify a model’s learned concepts, they overlook the relationships between concepts that make up its abstractions and inform its ability to generalize to new data. To assess whether models’ have learned human-aligned abstractions, we introduce abstraction alignment, a methodology to compare model behavior against formal human knowledge. Abstraction alignment externalizes domain-specific human knowledge as an abstraction graph, a set of pertinent concepts spanning levels of abstraction. Using the abstraction graph as a ground truth, abstraction alignment measures the alignment of a model’s behavior by determining how much of its uncertainty is accounted for by the human abstractions. By aggregating abstraction alignment across entire datasets, users can test alignment hypotheses, such as which human concepts the model has learned and where misalignments recur. In evaluations with experts, abstraction alignment differentiates seemingly similar errors, improves the verbosity of existing model-quality metrics, and uncovers improvements to current human abstractions.more » « lessFree, publicly-accessible full text available April 25, 2026
-
Many papers make claims about specific visualization techniques that are said to enhance or calibrate trust in AI systems. But a design choice that enhances trust in some cases appears to damage it in others. In this paper, we explore this inherent duality through an analogy with “knobs”. Turning a knob too far in one direction may result in under-trust, too far in the other, over-trust or, turned up further still, in a confusing distortion. While the designs or so-called “knobs” are not inherently evil, they can be misused or used in an adversarial context and thereby manipulated to mislead users or promote unwarranted levels of trust in AI systems. When a visualization that has no meaningful connection with the underlying model or data is employed to enhance trust, we refer to the result as “trust junk.” From a review of 65 papers, we identify nine commonly made claims about trust calibration. We synthesize them into a framework of knobs that can be used for good or “evil,” and distill our findings into observed pitfalls for the responsible design of human-AI systems.more » « less
-
null (Ed.)Table2Text systems generate textual output based on structured data utilizing machine learning. These systems are essential for fluent natural language interfaces in tools such as virtual assistants; however, left to generate freely these ML systems often produce misleading or unexpected outputs. GenNI (Generation Negotiation Interface) is an interactive visual system for high-level human-AI collaboration in producing descriptive text. The tool utilizes a deep learning model designed with explicit control states. These controls allow users to globally constrain model generations, without sacrificing the representation power of the deep learning models. The visual interface makes it possible for users to interact with AI systems following a Refine-Forecast paradigm to ensure that the generation system acts in a manner human users find suitable. We report multiple use cases on two experiments that improve over uncontrolled generation approaches, while at the same time providing fine-grained control. A demo and source code are available at https://genni.vizhub.ai.more » « less
An official website of the United States government
