skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Stuart, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Macquart relation describes the correlation between the dispersion measure (DM) of fast radio bursts (FRBs) and the redshiftzof their host galaxies. The scatter of the Macquart relation is sensitive to the distribution of baryons in the intergalactic medium including those ejected from galactic halos through feedback processes. The variance of the distribution in DMs from the cosmic web (DMcosmic) is parameterized by a fluctuation parameterF. In this work, we present a new measurement ofFusing 78 FRBs of which 21 have been localized to host galaxies. Our analysis simultaneously fits for the Hubble constantH0and the DM distribution due to the FRB host galaxy. We find that the fluctuation parameter is degenerate with these parameters, most notablyH0, and use a uniform prior onH0to measurelog10F>0.86at the 3σconfidence interval and a new constraint on the Hubble constantH0=85.38.1+9.4kms1Mpc1. Using a synthetic sample of 100 localized FRBs, the constraint on the fluctuation parameter is improved by a factor of ∼2. Comparing ourFmeasurement to simulated predictions from cosmological simulation (IllustrisTNG), we find agreement between redshifts 0.4 <z andz< 2.0. However, atz< 0.4, the simulations underpredictF, which we attribute to the rapidly changing extragalactic DM excess distribution at low redshift.

    more » « less
  2. Abstract

    We present particle-in-cell simulations of a combined whistler heat flux and temperature anisotropy instability that is potentially operating in the solar wind. The simulations are performed in a uniform plasma and initialized with core and halo electron populations typical of the solar wind beyond about 0.3 au. We demonstrate that the instability produces whistler-mode waves propagating both along (anti-sunward) and opposite (sunward) to the electron heat flux. The saturated amplitudes of both sunward and anti-sunward whistler waves are strongly correlated with their initial linear growth rates,Bw/B0(γ/ωce)ν, where for typical electron betas we have 0.6 ≲ν≲ 0.9. We show that because of the relatively large spectral width of the whistler waves, the instability saturates through the formation of quasi-linear plateaus around the resonant velocities. The revealed correlations of whistler wave amplitudes and spectral widths with electron beta and temperature anisotropy are consistent with solar wind observations. We show that anti-sunward whistler waves result in an electron heat flux decrease, while sunward whistler waves actually lead to an electron heat flux increase. The net effect is the electron heat flux suppression, whose efficiency is larger for larger electron betas and temperature anisotropies. The electron heat flux suppression can be up to 10%–60% provided that the saturated whistler wave amplitudes exceed about 1% of the background magnetic field. The experimental applications of the presented results are discussed.

    more » « less
  3. Abstract

    We present Stratospheric Observatory For Infrared Astronomy (SOFIA) + Atacama Large Millimeter/submillimeter Array (ALMA) continuum and spectral-line polarization data on the massive molecular cloud BYF 73, revealing important details about the magnetic field morphology, gas structures, and energetics in this unusual massive star formation laboratory. The 154μm HAWC+ polarization map finds a highly organized magnetic field in the densest, inner 0.55 × 0.40 pc portion of the cloud, compared to an unremarkable morphology in the cloud’s outer layers. The 3 mm continuum ALMA polarization data reveal several more structures in the inner domain, including a parsec-long, ∼500M“Streamer” around the central massive protostellar object MIR 2, with magnetic fields mostly parallel to the east–west Streamer but oriented north–south across MIR 2. The magnetic field orientation changes from mostly parallel to the column density structures to mostly perpendicular, at thresholdsNcrit= 6.6 × 1026m−2,ncrit= 2.5 × 1011m−3, andBcrit= 42 ± 7 nT. ALMA also mapped Goldreich–Kylafis polarization in12CO across the cloud, which traces, in both total intensity and polarized flux, a powerful bipolar outflow from MIR 2 that interacts strongly with the Streamer. The magnetic field is also strongly aligned along the outflow direction; energetically, it may dominate the outflow near MIR 2, comprising rare evidence for a magnetocentrifugal origin to such outflows. A portion of the Streamer may be in Keplerian rotation around MIR 2, implying a gravitating mass 1350 ± 50Mfor the protostar+disk+envelope; alternatively, these kinematics can be explained by gas in free-fall toward a 950 ± 35Mobject. The high accretion rate onto MIR 2 apparently occurs through the Streamer/disk, and could account for ∼33% of MIR 2's total luminosity via gravitational energy release.

    more » « less
  4. Abstract

    The FLIMFLAM survey is collecting spectroscopic data of field galaxies near fast radio burst (FRB) sight lines to constrain key parameters describing the distribution of matter in the Universe. In this work, we leverage the survey data to determine the source of the excess extragalactic dispersion measure (DM), compared to Macquart relation estimates of four FRBs: FRB20190714A, FRB20200906A, FRB20200430A, and FRB20210117A. By modeling the gas distribution around the foreground galaxy halos and galaxy groups of the sight lines, we estimate DMhalos, their contribution to the FRB DMs. The FRB20190714A sight line shows a clear excess of foreground halos which contribute roughly two-thirds of the observed excess DM, thus implying a sight line that is baryon dense. FRB20200906A shows a smaller but nonnegligible foreground halo contribution, and further analysis of the intergalactic medium is necessary to ascertain the true cosmic contribution to its DM. FRB20200430A and FRB20210117A show negligible foreground contributions, implying a large host galaxy excess and/or progenitor environment excess.

    more » « less

    FRB 20210912A is a fast radio burst (FRB), detected and localized to subarcsecond precision by the Australian Square Kilometre Array Pathfinder. No host galaxy has been identified for this burst despite the high precision of its localization and deep optical and infrared follow-up, to 5σ limits of R = 26.7 mag and Ks = 24.9 mag with the Very Large Telescope. The combination of precise radio localization and deep optical imaging has almost always resulted in the secure identification of a host galaxy, and this is the first case in which the line of sight is not obscured by the Galactic disc. The dispersion measure of this burst, DMFRB = 1233.696 ± 0.006 pc cm−3, allows for a large source redshift of z > 1 according to the Macquart relation. It could thus be that the host galaxy is consistent with the known population of FRB hosts, but is too distant to detect in our observations (z > 0.7 for a host like that of the first repeating FRB source, FRB 20121102A); that it is more nearby with a significant excess in DMhost, and thus dimmer than any known FRB host; or, least likely, that the FRB is truly hostless. We consider each possibility, making use of the population of known FRB hosts to frame each scenario. The fact of the missing host has ramifications for the FRB field: even with high-precision localization and deep follow-up, some FRB hosts may be difficult to detect, with more distant hosts being the less likely to be found. This has implications for FRB cosmology, in which high-redshift detections are valuable.

    more » « less
  6. Abstract

    We present high-resolution 1.5–6 GHz Karl G. Jansky Very Large Array and Hubble Space Telescope (HST) optical and infrared observations of the extremely active repeating fast radio burst (FRB) FRB 20201124A and its barred spiral host galaxy. We constrain the location and morphology of star formation in the host and search for a persistent radio source (PRS) coincident with FRB 20201124A. We resolve the morphology of the radio emission across all frequency bands and measure a star formation rate (SFR) ≈ 8.9Myr−1, approximately ≈2.5–6 times larger than optically inferred SFRs, demonstrating dust-obscured star formation throughout the host. Compared to a sample of all known FRB hosts with radio emission, the host of FRB 20201124A has the most significantly obscured star formation. While HST observations show the FRB to be offset from the bar or spiral arms, the radio emission extends to the FRB location. We propose that the FRB progenitor could have formed in situ (e.g., a magnetar born from a massive star explosion). It is still plausible, although less likely, that the progenitor of FRB 20201124A migrated from the central bar of the host. We further place a limit on the luminosity of a putative PRS at the FRB position ofL6.0GHz≲ 1.8 ×1027erg s−1Hz−1, among the deepest PRS luminosity limits to date. However, this limit is still broadly consistent with both magnetar nebulae and hypernebulae models assuming a constant energy injection rate of the magnetar and an age of ≳105yr in each model, respectively.

    more » « less
  7. Abstract

    Observations of the young solar wind by the Parker Solar Probe (PSP) mission reveal the existence of intense plasma wave bursts with frequencies between 0.05 and 0.20fce(tens of hertz up to ∼300 Hz) in the spacecraft frame. The wave bursts are often collocated with inhomogeneities in the solar wind magnetic field, such as local dips in magnitude or sudden directional changes. The observed waves are identified as electromagnetic whistler waves that propagate either sunward, anti-sunward, or in counter-propagating configurations during different burst events. Being generated in the solar wind flow, the waves experience significant Doppler downshift and upshift of wave frequency in the spacecraft frame for sunward and anti-sunward waves, respectively. Their peak amplitudes can be larger than 2 nT, where such values represent up to 10% of the background magnetic field during the interval of study. The amplitude is maximum for propagation parallel to the background magnetic field. We (i) evaluate the properties of these waves by reconstructing their parameters in the plasma frame, (ii) estimate the effective length of the PSP electric field antennas at whistler frequencies, and (iii) discuss the generation mechanism of these waves.

    more » « less
  8. Abstract This paper addresses the first direct investigation of the energy budget in the solar corona. Exploiting joint observations of the same coronal plasma by Parker Solar Probe and the Metis coronagraph aboard Solar Orbiter and the conserved equations for mass, magnetic flux, and wave action, we estimate the values of all terms comprising the total energy flux of the proton component of the slow solar wind from 6.3 to 13.3 R ⊙ . For distances from the Sun to less than 7 R ⊙ , we find that the primary source of solar wind energy is magnetic fluctuations including Alfvén waves. As the plasma flows away from the low corona, magnetic energy is gradually converted into kinetic energy, which dominates the total energy flux at heights above 7 R ⊙ . It is found too that the electric potential energy flux plays an important role in accelerating the solar wind only at altitudes below 6 R ⊙ , while enthalpy and heat fluxes only become important at even lower heights. The results finally show that energy equipartition does not exist in the solar corona. 
    more » « less
    Free, publicly-accessible full text available August 28, 2024
  9. Abstract In this Letter, we report observations of magnetic switchback (SB) features near 1 au using data from the Wind spacecraft. These features appear to be strikingly similar to the ones observed by the Parker Solar Probe mission closer to the Sun: namely, one-sided spikes (or enhancements) in the solar-wind bulk speed V that correlate/anticorrelate with the spikes seen in the radial-field component B R . In the solar-wind streams that we analyzed, these specific SB features near 1 au are associated with large-amplitude Alfvénic oscillations that propagate outward from the Sun along a local background (prevalent) magnetic field B 0 that is nearly radial. We also show that, when B 0 is nearly perpendicular to the radial direction, the large-amplitude Alfvénic oscillations display variations in V that are two sided (i.e., V alternately increases and decreases depending on the vector Δ B = B − B 0 ). As a consequence, SBs may not always appear as one-sided spikes in V , especially at larger heliocentric distances where the local background field statistically departs from the radial direction. We suggest that SBs can be well described by large-amplitude Alfvénic fluctuations if the field rotation is computed with respect to a well-determined local background field that, in some cases, may deviate from the large-scale Parker field. 
    more » « less
  10. Abstract

    We present the discovery of an as yet nonrepeating fast radio burst (FRB), FRB 20210117A, with the Australian Square Kilometre Array Pathfinder (ASKAP), as a part of the Commensal Real-time ASKAP Fast Transients Survey. The subarcsecond localization of the burst led to the identification of its host galaxy atz= 0.214(1). This redshift is much lower than what would be expected for a source dispersion measure (DM) of 729 pc cm−3, given typical contributions from the intergalactic medium and the host galaxy. Optical observations reveal the host to be a dwarf galaxy with little ongoing star formation—very different to the dwarf host galaxies of the known repeating FRBs 20121102A and 20190520B. We find an excess DM contribution from the host and attribute it to the FRB’s local environment. We do not find any radio emission from the FRB site or host galaxy. The low magnetized environment and the lack of a persistent radio source indicate that the FRB source is older than those found in other dwarf host galaxies, establishing the diversity of FRB sources in dwarf galaxy environments. We find our observations to be fully consistent with the “hypernebula” model, where the FRB is powered by an accretion jet from a hyperaccreting black hole. Finally, our high time resolution analysis reveals burst characteristics similar to those seen in repeating FRBs. We encourage follow-up observations of FRB 20210117A to establish any repeating nature.

    more » « less