Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Millions of nocturnally migrating birds die each year from collisions with built structures, especially brightly illuminated buildings and communication towers. Reducing this source of mortality requires knowledge of important behavioral, meteorological, and anthropogenic factors, yet we lack an understanding of the interacting roles of migration, artificial lighting, and weather conditions in causing fatal bird collisions. Using two decades of collision surveys and concurrent weather and migration measures, we model numbers of collisions occurring at a large urban building in Chicago. We find that the magnitude of nocturnal bird migration, building light output, and wind conditions are the most important predictors of fatal collisions. The greatest mortality occurred when the building was brightly lit during large nocturnal migration events and when winds concentrated birds along the Chicago lakeshore. We estimate that halving lighted window area decreases collision counts by 11× in spring and 6× in fall. Bird mortality could be reduced by ∼60% at this site by decreasing lighted window area to minimum levels historically recorded. Our study provides strong support for a relationship between nocturnal migration magnitude and urban bird mortality, mediated by light pollution and local atmospheric conditions. Although our research focuses on a single site, our findings have global implications for reducing or eliminating a critically important cause of bird mortality.more » « less
-
We present an integrated open population model where the population dynamics are defined by a differential equation, and the related statistical model utilizes a Poisson binomial convolution likelihood. Key advantages of the proposed approach over existing open population models include the flexibility to predict related, but unobserved quantities such as total immigration or emigration over a specified time period, and more computationally efficient posterior simulation by elimination of the need to explicitly simulate latent immigration and emigration. The viability of the proposed method is shown in an in-depth analysis of outdoor recreation participation on public lands, where the surveyed populations changed rapidly and demographic population closure cannot be assumed even within a single day.more » « less
-
Abstract Population size is a key metric for management and policy decisions, yet wildlife monitoring programmes are often limited by the spatial and temporal scope of surveys. In these cases, citizen science data may provide complementary information at higher resolution and greater extent.We present a case study demonstrating how data from the eBird citizen science programme can be combined with regional monitoring efforts by the US Fish and Wildlife Service to produce high‐resolution estimates of golden eagle abundance. We developed a model that uses aerial survey data from the western United States to calibrate high‐resolution annual estimates of relative abundance from eBird. Using this model, we compared regional population size estimates based on the calibrated eBird information with those based on aerial survey data alone.Population size estimates based on the calibrated eBird information had strong correspondence to estimates from aerial survey data in two out of four regions, and population trajectories based on the two approaches showed high correlations.We demonstrate how the combination of citizen science data and targeted surveys can be used to (a) increase the spatial resolution of population size estimates, (b) extend the spatial extent of inference and (c) predict population size beyond the temporal period of surveys. Findings based on this case study can be used to refine policy metrics used by the US Fish and Wildlife Service and inform permitting regulations (e.g. mortality/harm associated with wind energy development).Policy implications: Our results demonstrate the ability of citizen science data to complement targeted monitoring programmes and improve the efficacy of decision frameworks that require information on population size or trajectory. After validating citizen science data against survey‐based benchmarks, agencies can harness strengths of citizen science data to supplement information needs and increase the resolution and extent of population size predictions.more » « less
-
Abstract The research and conservation community has successfully harnessed the wealth of ecological knowledge found in unprecedented volumes of citizen science (CS) data world‐wide. However, few examples exist of the use of CS data to directly inform policy.Current examples of applications of CS data mainly stem from programs that are restricted in scope (e.g. defined protocols, restricted sampling time frame), and the potential use of unrestricted CS data to inform policy remains largely untapped.Here, we make a call for moving beyond questioning the reliability of CS data and present a case study of how the US Fish and Wildlife Service (USFWS) used information from an unrestricted CS program (eBird) to inform levels of exposure to collision risk for wind energy development.Policy implications. The USFWS made the technical recommendation to use eBird abundance estimates for the bald eagle as the only source of information to define low‐risk collision areas as part of the agency's wind energy permitting process. Our study contributes a clear pathway of how to realize the potential of unrestricted CS programs for generating the evidence base needed to inform policy decisions.more » « less
An official website of the United States government
